!2743 add more ut and st for SummaryCollector
Merge pull request !2743 from ougongchang/summary_collector_utpull/2743/MERGE
commit
2fadbb1d04
@ -1,99 +0,0 @@
|
||||
# Copyright 2019 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
""" test model train """
|
||||
import os
|
||||
import numpy as np
|
||||
from apply_momentum import ApplyMomentum
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore.nn import wrap
|
||||
from mindspore import Tensor, Model
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.train.summary.summary_record import SummaryRecord
|
||||
|
||||
CUR_DIR = os.getcwd()
|
||||
SUMMARY_DIR = CUR_DIR + "/test_temp_summary_event_file/"
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class MsWrapper(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(MsWrapper, self).__init__(auto_prefix=False)
|
||||
self._network = network
|
||||
|
||||
@ms_function
|
||||
def construct(self, *args):
|
||||
return self._network(*args)
|
||||
|
||||
|
||||
def me_train_tensor(net, input_np, label_np, epoch_size=2):
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
opt = ApplyMomentum(Tensor(np.array([0.1])), Tensor(np.array([0.9])),
|
||||
filter(lambda x: x.requires_grad, net.get_parameters()))
|
||||
Model(net, loss, opt)
|
||||
_network = wrap.WithLossCell(net, loss)
|
||||
_train_net = MsWrapper(wrap.TrainOneStepCell(_network, opt))
|
||||
_train_net.set_train()
|
||||
with SummaryRecord(SUMMARY_DIR, file_suffix="_MS_GRAPH", network=_train_net) as summary_writer:
|
||||
for epoch in range(0, epoch_size):
|
||||
print(f"epoch %d" % (epoch))
|
||||
output = _train_net(Tensor(input_np), Tensor(label_np))
|
||||
summary_writer.record(i)
|
||||
print("********output***********")
|
||||
print(output.asnumpy())
|
||||
|
||||
|
||||
def me_infer_tensor(net, input_np):
|
||||
net.set_train()
|
||||
net = MsWrapper(net)
|
||||
output = net(Tensor(input_np))
|
||||
return output
|
||||
|
||||
|
||||
def test_net():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, cin, cout):
|
||||
super(Net, self).__init__()
|
||||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode="same")
|
||||
self.conv = nn.Conv2d(cin, cin, kernel_size=1, stride=1, padding=0, has_bias=False, pad_mode="same")
|
||||
self.bn = nn.BatchNorm2d(cin, momentum=0.1, eps=0.0001)
|
||||
self.add = P.TensorAdd()
|
||||
self.relu = P.ReLU()
|
||||
self.mean = P.ReduceMean(keep_dims=True)
|
||||
self.reshape = P.Reshape()
|
||||
self.dense = nn.Dense(cin, cout)
|
||||
|
||||
def construct(self, input_x):
|
||||
output = input_x
|
||||
output = self.maxpool(output)
|
||||
identity = output
|
||||
output = self.conv(output)
|
||||
output = self.bn(output)
|
||||
output = self.add(output, identity)
|
||||
output = self.relu(output)
|
||||
output = self.mean(output, (-2, -1))
|
||||
output = self.reshape(output, (32, -1))
|
||||
output = self.dense(output)
|
||||
return output
|
||||
|
||||
net = Net(2048, 1001)
|
||||
input_np = np.ones([32, 2048, 14, 14]).astype(np.float32) * 0.01
|
||||
label_np = np.ones([32]).astype(np.int32)
|
||||
me_train_tensor(net, input_np, label_np)
|
||||
# me_infer_tensor(net, input_np)
|
@ -1,89 +0,0 @@
|
||||
# Copyright 2019 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""Summary gpu st."""
|
||||
import os
|
||||
import random
|
||||
import tempfile
|
||||
import shutil
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore.common.tensor import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.train.summary.summary_record import SummaryRecord
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
|
||||
|
||||
class SummaryNet(nn.Cell):
|
||||
"""Summary net."""
|
||||
def __init__(self, tag_tuple=None, scalar=1):
|
||||
super(SummaryNet, self).__init__()
|
||||
self.summary_s = P.ScalarSummary()
|
||||
self.summary_i = P.ImageSummary()
|
||||
self.summary_t = P.TensorSummary()
|
||||
self.histogram_summary = P.HistogramSummary()
|
||||
self.add = P.TensorAdd()
|
||||
self.tag_tuple = tag_tuple
|
||||
self.scalar = scalar
|
||||
|
||||
def construct(self, x, y, image):
|
||||
"""Run summary net."""
|
||||
self.summary_i("image", image)
|
||||
self.summary_s("x1", x)
|
||||
z = self.add(x, y)
|
||||
self.summary_t("z1", z)
|
||||
self.histogram_summary("histogram", z)
|
||||
return z
|
||||
|
||||
|
||||
def train_summary_record(test_writer, steps):
|
||||
"""Train and record summary."""
|
||||
net = SummaryNet()
|
||||
out_me_dict = {}
|
||||
for i in range(0, steps):
|
||||
x = Tensor(np.array([1.1 + random.uniform(1, 10)]).astype(np.float32))
|
||||
y = Tensor(np.array([1.2 + random.uniform(1, 10)]).astype(np.float32))
|
||||
image = Tensor(np.array([[[[1.2]]]]).astype(np.float32))
|
||||
out_put = net(x, y, image)
|
||||
test_writer.record(i)
|
||||
out_me_dict[i] = out_put.asnumpy()
|
||||
return out_me_dict
|
||||
|
||||
|
||||
class TestGpuSummary:
|
||||
"""Test Gpu summary."""
|
||||
summary_dir = tempfile.mkdtemp(suffix='_gpu_summary')
|
||||
|
||||
def setup_method(self):
|
||||
"""Run before method."""
|
||||
if not os.path.exists(self.summary_dir):
|
||||
os.mkdir(self.summary_dir)
|
||||
|
||||
def teardown_method(self):
|
||||
"""Run after method."""
|
||||
if os.path.exists(self.summary_dir):
|
||||
shutil.rmtree(self.summary_dir)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_summary_step10_summaryrecord1(self):
|
||||
"""Test record 10 step summary."""
|
||||
with SummaryRecord(self.summary_dir) as test_writer:
|
||||
train_summary_record(test_writer, steps=10)
|
@ -0,0 +1,194 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
""" test model train """
|
||||
import os
|
||||
import re
|
||||
import tempfile
|
||||
import shutil
|
||||
|
||||
import pytest
|
||||
|
||||
from mindspore import dataset as ds
|
||||
from mindspore import nn, Tensor, context
|
||||
from mindspore.nn.metrics import Accuracy
|
||||
from mindspore.nn.optim import Momentum
|
||||
from mindspore.dataset.transforms import c_transforms as C
|
||||
from mindspore.dataset.transforms.vision import c_transforms as CV
|
||||
from mindspore.dataset.transforms.vision import Inter
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.common.initializer import TruncatedNormal
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.train import Model
|
||||
from mindspore.train.callback import SummaryCollector
|
||||
|
||||
from tests.summary_utils import SummaryReader
|
||||
|
||||
|
||||
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
|
||||
"""weight initial for conv layer"""
|
||||
weight = weight_variable()
|
||||
return nn.Conv2d(in_channels, out_channels,
|
||||
kernel_size=kernel_size, stride=stride, padding=padding,
|
||||
weight_init=weight, has_bias=False, pad_mode="valid")
|
||||
|
||||
|
||||
def fc_with_initialize(input_channels, out_channels):
|
||||
"""weight initial for fc layer"""
|
||||
weight = weight_variable()
|
||||
bias = weight_variable()
|
||||
return nn.Dense(input_channels, out_channels, weight, bias)
|
||||
|
||||
|
||||
def weight_variable():
|
||||
"""weight initial"""
|
||||
return TruncatedNormal(0.02)
|
||||
|
||||
|
||||
class LeNet5(nn.Cell):
|
||||
"""Define LeNet5 network."""
|
||||
def __init__(self, num_class=10, channel=1):
|
||||
super(LeNet5, self).__init__()
|
||||
self.num_class = num_class
|
||||
self.conv1 = conv(channel, 6, 5)
|
||||
self.conv2 = conv(6, 16, 5)
|
||||
self.fc1 = fc_with_initialize(16 * 5 * 5, 120)
|
||||
self.fc2 = fc_with_initialize(120, 84)
|
||||
self.fc3 = fc_with_initialize(84, self.num_class)
|
||||
self.relu = nn.ReLU()
|
||||
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
|
||||
self.flatten = nn.Flatten()
|
||||
self.scalar_summary = P.ScalarSummary()
|
||||
self.image_summary = P.ImageSummary()
|
||||
self.histogram_summary = P.HistogramSummary()
|
||||
self.tensor_summary = P.TensorSummary()
|
||||
self.channel = Tensor(channel)
|
||||
|
||||
def construct(self, data):
|
||||
"""define construct."""
|
||||
self.image_summary('image', data)
|
||||
output = self.conv1(data)
|
||||
self.histogram_summary('histogram', output)
|
||||
output = self.relu(output)
|
||||
self.tensor_summary('tensor', output)
|
||||
output = self.max_pool2d(output)
|
||||
output = self.conv2(output)
|
||||
output = self.relu(output)
|
||||
output = self.max_pool2d(output)
|
||||
output = self.flatten(output)
|
||||
output = self.fc1(output)
|
||||
output = self.relu(output)
|
||||
output = self.fc2(output)
|
||||
output = self.relu(output)
|
||||
output = self.fc3(output)
|
||||
self.scalar_summary('scalar', self.channel)
|
||||
return output
|
||||
|
||||
|
||||
def create_dataset(data_path, batch_size=32, repeat_size=1, num_parallel_workers=1):
|
||||
"""create dataset for train or test"""
|
||||
# define dataset
|
||||
mnist_ds = ds.MnistDataset(data_path)
|
||||
|
||||
resize_height, resize_width = 32, 32
|
||||
rescale = 1.0 / 255.0
|
||||
rescale_nml = 1 / 0.3081
|
||||
shift_nml = -1 * 0.1307 / 0.3081
|
||||
|
||||
# define map operations
|
||||
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Bilinear mode
|
||||
rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
|
||||
rescale_op = CV.Rescale(rescale, shift=0.0)
|
||||
hwc2chw_op = CV.HWC2CHW()
|
||||
type_cast_op = C.TypeCast(mstype.int32)
|
||||
|
||||
# apply map operations on images
|
||||
mnist_ds = mnist_ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=num_parallel_workers)
|
||||
mnist_ds = mnist_ds.map(input_columns="image", operations=resize_op, num_parallel_workers=num_parallel_workers)
|
||||
mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_op, num_parallel_workers=num_parallel_workers)
|
||||
mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_nml_op, num_parallel_workers=num_parallel_workers)
|
||||
mnist_ds = mnist_ds.map(input_columns="image", operations=hwc2chw_op, num_parallel_workers=num_parallel_workers)
|
||||
|
||||
# apply DatasetOps
|
||||
mnist_ds = mnist_ds.shuffle(buffer_size=10000) # 10000 as in LeNet train script
|
||||
mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
|
||||
mnist_ds = mnist_ds.repeat(repeat_size)
|
||||
|
||||
return mnist_ds
|
||||
|
||||
|
||||
class TestSummary:
|
||||
"""Test summary collector the basic function."""
|
||||
base_summary_dir = ''
|
||||
mnist_path = '/home/workspace/mindspore_dataset/mnist'
|
||||
|
||||
@classmethod
|
||||
def setup_class(cls):
|
||||
"""Run before test this class."""
|
||||
cls.base_summary_dir = tempfile.mkdtemp(suffix='summary')
|
||||
|
||||
@classmethod
|
||||
def teardown_class(cls):
|
||||
"""Run after test this class."""
|
||||
if os.path.exists(cls.base_summary_dir):
|
||||
shutil.rmtree(cls.base_summary_dir)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_summary_ascend(self):
|
||||
"""Test summary ascend."""
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
self._run_network()
|
||||
|
||||
def _run_network(self, dataset_sink_mode=True):
|
||||
lenet = LeNet5()
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
|
||||
optim = Momentum(lenet.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
model = Model(lenet, loss_fn=loss, optimizer=optim, metrics={'acc': Accuracy()})
|
||||
summary_dir = tempfile.mkdtemp(dir=self.base_summary_dir)
|
||||
summary_collector = SummaryCollector(summary_dir=summary_dir, collect_freq=1)
|
||||
|
||||
ds_train = create_dataset(os.path.join(self.mnist_path, "train"))
|
||||
model.train(1, ds_train, callbacks=[summary_collector], dataset_sink_mode=dataset_sink_mode)
|
||||
|
||||
ds_eval = create_dataset(os.path.join(self.mnist_path, "test"))
|
||||
model.eval(ds_eval, dataset_sink_mode=dataset_sink_mode, callbacks=[summary_collector])
|
||||
|
||||
self._check_summary_result(summary_dir)
|
||||
|
||||
@staticmethod
|
||||
def _check_summary_result(summary_dir):
|
||||
summary_file_path = ''
|
||||
for file in os.listdir(summary_dir):
|
||||
if re.search("_MS", file):
|
||||
summary_file_path = os.path.join(summary_dir, file)
|
||||
break
|
||||
|
||||
assert not summary_file_path
|
||||
|
||||
with SummaryReader(summary_file_path) as summary_reader:
|
||||
tags = set()
|
||||
|
||||
# Read the event that record by SummaryCollector.begin
|
||||
summary_reader.read_event()
|
||||
|
||||
summary_event = summary_reader.read_event()
|
||||
for value in summary_event.summary.value:
|
||||
tags.add(value.tag)
|
||||
|
||||
# There will not record input data when dataset sink mode is True
|
||||
expected_tags = ['conv1.weight/auto', 'conv2.weight/auto', 'fc1.weight/auto', 'fc1.bias/auto',
|
||||
'fc2.weight/auto', 'histogram', 'image', 'scalar', 'tensor']
|
||||
assert set(expected_tags) == tags
|
Loading…
Reference in new issue