|
|
|
@ -25,6 +25,15 @@ keyConstant = [3528531795, 2654435769, 3449720151, 3144134277]
|
|
|
|
|
_GLOBAL_SEED = None
|
|
|
|
|
_KERNEL_SEED = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _reset_op_seed():
|
|
|
|
|
"""
|
|
|
|
|
Reset op seeds in the kernel's dictionary.
|
|
|
|
|
"""
|
|
|
|
|
for kernel_name, op_seed in _KERNEL_SEED.items():
|
|
|
|
|
_KERNEL_SEED[(kernel_name, op_seed)] = op_seed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def set_seed(seed):
|
|
|
|
|
"""
|
|
|
|
|
Set global random seed.
|
|
|
|
@ -46,6 +55,81 @@ def set_seed(seed):
|
|
|
|
|
Raises:
|
|
|
|
|
ValueError: If seed is invalid (< 0).
|
|
|
|
|
TypeError: If seed isn't a int.
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
1. If global seed is not set, numpy.random and initializer will choose a random seed:
|
|
|
|
|
>>> np_1 = np.random.normal(0, 1, [1]).astype(np.float32) # A1
|
|
|
|
|
>>> np_1 = np.random.normal(0, 1, [1]).astype(np.float32) # A2
|
|
|
|
|
>>> w1 = Parameter(initializer("uniform", [2, 2], ms.float32), name="w1") # W1
|
|
|
|
|
>>> w1 = Parameter(initializer("uniform", [2, 2], ms.float32), name="w1") # W2
|
|
|
|
|
Rerun the program will get diferent results:
|
|
|
|
|
>>> np_1 = np.random.normal(0, 1, [1]).astype(np.float32) # A3
|
|
|
|
|
>>> np_1 = np.random.normal(0, 1, [1]).astype(np.float32) # A4
|
|
|
|
|
>>> w1 = Parameter(initializer("uniform", [2, 2], ms.float32), name="w1") # W3
|
|
|
|
|
>>> w1 = Parameter(initializer("uniform", [2, 2], ms.float32), name="w1") # W4
|
|
|
|
|
|
|
|
|
|
2. If global seed is set, numpy.random and initializer will use it:
|
|
|
|
|
>>> set_seed(1234)
|
|
|
|
|
>>> np_1 = np.random.normal(0, 1, [1]).astype(np.float32) # A1
|
|
|
|
|
>>> np_1 = np.random.normal(0, 1, [1]).astype(np.float32) # A2
|
|
|
|
|
>>> w1 = Parameter(initializer("uniform", [2, 2], ms.float32), name="w1") # W1
|
|
|
|
|
>>> w1 = Parameter(initializer("uniform", [2, 2], ms.float32), name="w1") # W2
|
|
|
|
|
Rerun the program will get the same results:
|
|
|
|
|
>>> set_seed(1234)
|
|
|
|
|
>>> np_1 = np.random.normal(0, 1, [1]).astype(np.float32) # A1
|
|
|
|
|
>>> np_1 = np.random.normal(0, 1, [1]).astype(np.float32) # A2
|
|
|
|
|
>>> w1 = Parameter(initializer("uniform", [2, 2], ms.float32), name="w1") # W1
|
|
|
|
|
>>> w1 = Parameter(initializer("uniform", [2, 2], ms.float32), name="w1") # W2
|
|
|
|
|
|
|
|
|
|
3. If neither global seed nor op seed is set, mindspore.ops.composite.random_ops and
|
|
|
|
|
mindspore.nn.probability.distribution will choose a random seed:
|
|
|
|
|
>>> c1 = C.uniform((1, 4)) # C1
|
|
|
|
|
>>> c2 = C.uniform((1, 4)) # C2
|
|
|
|
|
Rerun the program will get different results:
|
|
|
|
|
>>> c1 = C.uniform((1, 4)) # C3
|
|
|
|
|
>>> c2 = C.uniform((1, 4)) # C4
|
|
|
|
|
|
|
|
|
|
4. If global seed is set, but op seed is not set, mindspore.ops.composite.random_ops and
|
|
|
|
|
mindspore.nn.probability.distribution will caculate a seed according to global seed and
|
|
|
|
|
default op seed. Each call will change the default op seed, thus each call get different
|
|
|
|
|
results.
|
|
|
|
|
>>> set_seed(1234)
|
|
|
|
|
>>> c1 = C.uniform((1, 4)) # C1
|
|
|
|
|
>>> c2 = C.uniform((1, 4)) # C2
|
|
|
|
|
Rerun the program will get the same results:
|
|
|
|
|
>>> set_seed(1234)
|
|
|
|
|
>>> c1 = C.uniform((1, 4)) # C1
|
|
|
|
|
>>> c2 = C.uniform((1, 4)) # C2
|
|
|
|
|
|
|
|
|
|
5. If both global seed and op seed are set, mindspore.ops.composite.random_ops and
|
|
|
|
|
mindspore.nn.probability.distribution will caculate a seed according to global seed and
|
|
|
|
|
op seed counter. Each call will change the op seed counter, thus each call get different
|
|
|
|
|
results.
|
|
|
|
|
>>> set_seed(1234)
|
|
|
|
|
>>> c1 = C.uniform((1, 4), seed=2) # C1
|
|
|
|
|
>>> c2 = C.uniform((1, 4), seed=2) # C2
|
|
|
|
|
Rerun the program will get the same results:
|
|
|
|
|
>>> set_seed(1234)
|
|
|
|
|
>>> c1 = C.uniform((1, 4), seed=2) # C1
|
|
|
|
|
>>> c2 = C.uniform((1, 4), seed=2) # C2
|
|
|
|
|
|
|
|
|
|
6. If op seed is set but global seed is not set, 0 will be used as global seed. Then
|
|
|
|
|
mindspore.ops.composite.random_ops and mindspore.nn.probability.distribution act as in
|
|
|
|
|
condition 5.
|
|
|
|
|
>>> c1 = C.uniform((1, 4), seed=2) # C1
|
|
|
|
|
>>> c2 = C.uniform((1, 4), seed=2) # C2
|
|
|
|
|
Rerun the program will get the same results:
|
|
|
|
|
>>> c1 = C.uniform((1, 4), seed=2) # C1
|
|
|
|
|
>>> c2 = C.uniform((1, 4), seed=2) # C2
|
|
|
|
|
|
|
|
|
|
7. Recall set_seed() in the program will reset numpy seed and op seed counter of
|
|
|
|
|
mindspore.ops.composite.random_ops and mindspore.nn.probability.distribution.
|
|
|
|
|
>>> set_seed(1234)
|
|
|
|
|
>>> np_1 = np.random.normal(0, 1, [1]).astype(np.float32) # A1
|
|
|
|
|
>>> c1 = C.uniform((1, 4), seed=2) # C1
|
|
|
|
|
>>> set_seed(1234)
|
|
|
|
|
>>> np_2 = np.random.normal(0, 1, [1]).astype(np.float32) # still get A1
|
|
|
|
|
>>> c2 = C.uniform((1, 4), seed=2) # still get C1
|
|
|
|
|
"""
|
|
|
|
|
if not isinstance(seed, int):
|
|
|
|
|
raise TypeError("The seed must be type of int.")
|
|
|
|
@ -57,7 +141,7 @@ def set_seed(seed):
|
|
|
|
|
_GLOBAL_SEED = seed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_global_seed():
|
|
|
|
|
def get_seed():
|
|
|
|
|
"""
|
|
|
|
|
Get global random seed.
|
|
|
|
|
"""
|
|
|
|
@ -101,7 +185,7 @@ def _get_op_seed(op_seed, kernel_name):
|
|
|
|
|
return _KERNEL_SEED[(kernel_name, op_seed)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _get_seed(op_seed, kernel_name):
|
|
|
|
|
def _get_graph_seed(op_seed, kernel_name):
|
|
|
|
|
"""
|
|
|
|
|
Get the graph-level seed.
|
|
|
|
|
Graph-level seed is used as a global variable, that can be used in different ops in case op-level seed is not set.
|
|
|
|
@ -125,12 +209,12 @@ def _get_seed(op_seed, kernel_name):
|
|
|
|
|
Examples:
|
|
|
|
|
>>> _get_seed(seed, 'normal')
|
|
|
|
|
"""
|
|
|
|
|
global_seed = get_global_seed()
|
|
|
|
|
global_seed = get_seed()
|
|
|
|
|
if global_seed is None:
|
|
|
|
|
global_seed = 0
|
|
|
|
|
if op_seed is None:
|
|
|
|
|
op_seed = 0
|
|
|
|
|
# eigther global seed or op seed is set, return (0, 0) to let kernel choose random seed.
|
|
|
|
|
# neither global seed or op seed is set, return (0, 0) to let kernel choose random seed.
|
|
|
|
|
if global_seed == 0 and op_seed == 0:
|
|
|
|
|
seeds = 0, 0
|
|
|
|
|
else:
|
|
|
|
@ -139,11 +223,3 @@ def _get_seed(op_seed, kernel_name):
|
|
|
|
|
seeds = _truncate_seed(global_seed), _truncate_seed(temp_seed)
|
|
|
|
|
_update_seeds(op_seed, kernel_name)
|
|
|
|
|
return seeds
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _reset_op_seed():
|
|
|
|
|
"""
|
|
|
|
|
Reset op seeds in the kernel's dictionary.
|
|
|
|
|
"""
|
|
|
|
|
for (kernel_name, op_seed) in _KERNEL_SEED:
|
|
|
|
|
_KERNEL_SEED[(kernel_name, op_seed)] = op_seed
|
|
|
|
|