|
|
|
@ -18,6 +18,7 @@ import matplotlib.pyplot as plt
|
|
|
|
|
from mindspore import log as logger
|
|
|
|
|
import mindspore.dataset.engine as de
|
|
|
|
|
import mindspore.dataset.transforms.vision.py_transforms as F
|
|
|
|
|
import mindspore.dataset.transforms.vision.c_transforms as C
|
|
|
|
|
|
|
|
|
|
DATA_DIR = "../data/dataset/testImageNetData/train/"
|
|
|
|
|
|
|
|
|
@ -101,7 +102,68 @@ def test_uniform_augment(plot=False, num_ops=2):
|
|
|
|
|
if plot:
|
|
|
|
|
visualize(images_original, images_ua)
|
|
|
|
|
|
|
|
|
|
def test_cpp_uniform_augment(plot=False, num_ops=2):
|
|
|
|
|
"""
|
|
|
|
|
Test UniformAugment
|
|
|
|
|
"""
|
|
|
|
|
logger.info("Test CPP UniformAugment")
|
|
|
|
|
|
|
|
|
|
# Original Images
|
|
|
|
|
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
|
|
|
|
|
|
|
|
|
|
transforms_original = [C.Decode(), C.Resize(size=[224, 224]),
|
|
|
|
|
F.ToTensor()]
|
|
|
|
|
|
|
|
|
|
ds_original = ds.map(input_columns="image",
|
|
|
|
|
operations=transforms_original)
|
|
|
|
|
|
|
|
|
|
ds_original = ds_original.batch(512)
|
|
|
|
|
|
|
|
|
|
for idx, (image,label) in enumerate(ds_original):
|
|
|
|
|
if idx == 0:
|
|
|
|
|
images_original = np.transpose(image, (0, 2, 3, 1))
|
|
|
|
|
else:
|
|
|
|
|
images_original = np.append(images_original,
|
|
|
|
|
np.transpose(image, (0, 2, 3, 1)),
|
|
|
|
|
axis=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# UniformAugment Images
|
|
|
|
|
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
|
|
|
|
|
transforms_ua = [C.RandomCrop(size=[224, 224], padding=[32, 32, 32, 32]),
|
|
|
|
|
C.RandomHorizontalFlip(),
|
|
|
|
|
C.RandomVerticalFlip(),
|
|
|
|
|
C.RandomColorAdjust(),
|
|
|
|
|
C.RandomRotation(degrees=45)]
|
|
|
|
|
|
|
|
|
|
uni_aug = C.UniformAugment(operations=transforms_ua, num_ops=num_ops)
|
|
|
|
|
|
|
|
|
|
transforms_all = [C.Decode(), C.Resize(size=[224, 224]),
|
|
|
|
|
uni_aug,
|
|
|
|
|
F.ToTensor()]
|
|
|
|
|
|
|
|
|
|
ds_ua = ds.map(input_columns="image",
|
|
|
|
|
operations=transforms_all, num_parallel_workers=1)
|
|
|
|
|
|
|
|
|
|
ds_ua = ds_ua.batch(512)
|
|
|
|
|
|
|
|
|
|
for idx, (image,label) in enumerate(ds_ua):
|
|
|
|
|
if idx == 0:
|
|
|
|
|
images_ua = np.transpose(image, (0, 2, 3, 1))
|
|
|
|
|
else:
|
|
|
|
|
images_ua = np.append(images_ua,
|
|
|
|
|
np.transpose(image, (0, 2, 3, 1)),
|
|
|
|
|
axis=0)
|
|
|
|
|
if plot:
|
|
|
|
|
visualize(images_original, images_ua)
|
|
|
|
|
|
|
|
|
|
num_samples = images_original.shape[0]
|
|
|
|
|
mse = np.zeros(num_samples)
|
|
|
|
|
for i in range(num_samples):
|
|
|
|
|
mse[i] = np.mean((images_ua[i] - images_original[i]) ** 2)
|
|
|
|
|
logger.info("MSE= {}".format(str(np.mean(mse))))
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
test_uniform_augment(num_ops=1)
|
|
|
|
|
test_cpp_uniform_augment(num_ops=1)
|
|
|
|
|
|
|
|
|
|