commit
33d2cae607
@ -0,0 +1,42 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "nnacl/fp32/instance_norm.h"
|
||||
#include <math.h>
|
||||
#include "nnacl/instance_norm_parameter.h"
|
||||
#include "nnacl/op_base.h"
|
||||
|
||||
void InstanceNormFp32(const void *input, const void *mean, const void *variance, InstanceNormParameter *param,
|
||||
int task_id, void *output) {
|
||||
int units_per_thread = UP_DIV(param->unit_, param->op_parameter_.thread_num_);
|
||||
int completed_units = task_id * units_per_thread;
|
||||
if (completed_units >= param->unit_) {
|
||||
return;
|
||||
}
|
||||
int cur_unit = MSMIN(units_per_thread, param->unit_ - completed_units);
|
||||
int cur_offset = completed_units * param->channel_;
|
||||
for (int n = 0; n < param->batch_; n++) {
|
||||
for (int hw = 0; hw < cur_unit; hw++) {
|
||||
for (int c = 0; c < param->channel_; c++) {
|
||||
float variance_sqrt = sqrt(((const float *)variance)[n * param->channel_ + c] + param->epsilon_);
|
||||
((float *)output)[cur_offset + c] =
|
||||
(((const float *)input)[cur_offset + c] - ((const float *)mean)[n * param->channel_ + c]) / variance_sqrt;
|
||||
}
|
||||
cur_offset += param->channel_;
|
||||
}
|
||||
cur_offset += (param->unit_ - cur_unit) * param->channel_;
|
||||
}
|
||||
}
|
@ -0,0 +1,34 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_LITE_NNACL_FP32_INSTANCE_NORM_H_
|
||||
#define MINDSPORE_LITE_NNACL_FP32_INSTANCE_NORM_H_
|
||||
|
||||
#include "nnacl/instance_norm_parameter.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
void InstanceNormFp32(const void *input, const void *mean, const void *variance, InstanceNormParameter *param,
|
||||
int task_id, void *output);
|
||||
void FusedInstanceNormFp32(const void *input, const void *scale, const void *offset, const void *mean,
|
||||
const void *variance, InstanceNormParameter *param, int task_id, void *output);
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif // MINDSPORE_LITE_NNACL_FP32_INSTANCE_NORM_H_
|
@ -0,0 +1,32 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_LITE_NNACL_INSTANCE_NORM_PARAMETER_H_
|
||||
#define MINDSPORE_LITE_NNACL_INSTANCE_NORM_PARAMETER_H_
|
||||
|
||||
#include "nnacl/op_base.h"
|
||||
|
||||
typedef struct InstanceNormParameter {
|
||||
OpParameter op_parameter_;
|
||||
float epsilon_;
|
||||
float momentum_;
|
||||
int unit_;
|
||||
int batch_;
|
||||
int channel_;
|
||||
bool fused_;
|
||||
} InstanceNormParameter;
|
||||
|
||||
#endif // MINDSPORE_LITE_NNACL_INSTANCE_NORM_PARAMETER_H_
|
@ -0,0 +1,65 @@
|
||||
/**
|
||||
* Copyright 2019-2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "src/ops/instance_norm.h"
|
||||
#include <memory>
|
||||
namespace mindspore {
|
||||
namespace lite {
|
||||
#ifdef PRIMITIVE_WRITEABLE
|
||||
float InstanceNorm::GetEpsilon() const { return this->primitive_->value.AsInstanceNorm()->epsilon; }
|
||||
|
||||
void InstanceNorm::SetEpsilon(float epsilon) { this->primitive_->value.AsInstanceNorm()->epsilon = epsilon; }
|
||||
|
||||
int InstanceNorm::UnPackAttr(const Primitive &prim, const std::vector<AnfNodePtr> &inputs) {
|
||||
if (this->primitive_ == nullptr) {
|
||||
this->primitive_ = new (std::nothrow) schema::PrimitiveT;
|
||||
if (this->primitive_ == nullptr) {
|
||||
MS_LOG(ERROR) << "new primitiveT failed";
|
||||
return RET_ERROR;
|
||||
}
|
||||
this->primitive_->value.type = schema::PrimitiveType_InstanceNorm;
|
||||
}
|
||||
if (this->primitive_->value.type != schema::PrimitiveType_InstanceNorm) {
|
||||
MS_LOG(ERROR) << "Primitive type is error :" << this->primitive_->value.type;
|
||||
return RET_ERROR;
|
||||
}
|
||||
if (this->primitive_->value.value == nullptr) {
|
||||
auto attr = new (std::nothrow) schema::InstanceNormT();
|
||||
if (attr == nullptr) {
|
||||
MS_LOG(ERROR) << "new InstanceNormT failed";
|
||||
delete this->primitive_;
|
||||
return RET_ERROR;
|
||||
}
|
||||
attr->epsilon = GetValue<float>(prim.GetAttr("epsilon"));
|
||||
this->primitive_->value.value = attr;
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
#else
|
||||
int InstanceNorm::UnPackToFlatBuilder(const schema::Primitive *primitive, flatbuffers::FlatBufferBuilder *fbb) {
|
||||
MS_ASSERT(nullptr != primitive);
|
||||
MS_ASSERT(nullptr != fbb);
|
||||
auto val_offset = schema::CreateInstanceNorm(*fbb);
|
||||
auto prim_offset = schema::CreatePrimitive(*fbb, schema::PrimitiveType_InstanceNorm, val_offset.o);
|
||||
fbb->Finish(prim_offset);
|
||||
return RET_OK;
|
||||
}
|
||||
float InstanceNorm::GetEpsilon() const { return this->primitive_->value_as_InstanceNorm()->epsilon(); }
|
||||
|
||||
#endif
|
||||
} // namespace lite
|
||||
} // namespace mindspore
|
@ -0,0 +1,45 @@
|
||||
/**
|
||||
* Copyright 2019-2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef LITE_MINDSPORE_LITE_C_OPS_INSTANE_NORM_H_
|
||||
#define LITE_MINDSPORE_LITE_C_OPS_INSTANE_NORM_H_
|
||||
|
||||
#include <vector>
|
||||
#include <set>
|
||||
#include <cmath>
|
||||
#include "src/ops/primitive_c.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace lite {
|
||||
class InstanceNorm : public PrimitiveC {
|
||||
public:
|
||||
#ifdef PRIMITIVE_WRITEABLE
|
||||
MS_DECLARE_PARENT(InstanceNorm, PrimitiveC);
|
||||
InstanceNorm() = default;
|
||||
explicit InstanceNorm(schema::PrimitiveT *primitive) : PrimitiveC(primitive) {}
|
||||
int UnPackAttr(const Primitive &prim, const std::vector<AnfNodePtr> &inputs) override;
|
||||
void SetEpsilon(float epsilon);
|
||||
#else
|
||||
InstanceNorm() = default;
|
||||
|
||||
int UnPackToFlatBuilder(const schema::Primitive *primitive, flatbuffers::FlatBufferBuilder *fbb) override;
|
||||
#endif
|
||||
float GetEpsilon() const;
|
||||
};
|
||||
} // namespace lite
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // LITE_MINDSPORE_LITE_C_OPS_INSTANE_NORM_H_
|
@ -0,0 +1,93 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "src/runtime/kernel/arm/fp32/instance_norm.h"
|
||||
#include "nnacl/fp32/instance_norm.h"
|
||||
#include "src/kernel_registry.h"
|
||||
|
||||
using mindspore::lite::KernelRegistrar;
|
||||
using mindspore::lite::RET_ERROR;
|
||||
using mindspore::lite::RET_OK;
|
||||
using mindspore::schema::PrimitiveType_InstanceNorm;
|
||||
|
||||
namespace mindspore::kernel {
|
||||
int InstanceNormCPUKernel::Init() {
|
||||
if (!InferShapeDone()) {
|
||||
return RET_OK;
|
||||
}
|
||||
return ReSize();
|
||||
}
|
||||
|
||||
int InstanceNormCPUKernel::ReSize() {
|
||||
auto input_shapes = in_tensors_[0]->shape();
|
||||
auto n_dim = input_shapes.size();
|
||||
auto param = reinterpret_cast<InstanceNormParameter *>(op_parameter_);
|
||||
param->batch_ = input_shapes[0];
|
||||
param->channel_ = input_shapes[n_dim - 1];
|
||||
param->unit_ = 1;
|
||||
for (size_t i = 1; i < n_dim - 1; i++) {
|
||||
param->unit_ *= input_shapes[i];
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int InstanceNormCPUKernel::Run() {
|
||||
auto ret = ParallelLaunch(this->context_->thread_pool_, InstanceNormRun, this, op_parameter_->thread_num_);
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "InstanceNormRun error error_code[" << ret << "]";
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
int InstanceNormCPUKernel::DoExecute(int task_id) {
|
||||
auto param = reinterpret_cast<InstanceNormParameter *>(op_parameter_);
|
||||
InstanceNormFp32(in_tensors_.at(0)->MutableData(), in_tensors_.at(1)->MutableData(), in_tensors_.at(2)->MutableData(),
|
||||
param, task_id, out_tensors_.at(0)->MutableData());
|
||||
return mindspore::lite::RET_OK;
|
||||
}
|
||||
|
||||
int InstanceNormRun(void *cdata, int task_id) {
|
||||
auto kernel = reinterpret_cast<InstanceNormCPUKernel *>(cdata);
|
||||
auto ret = kernel->DoExecute(task_id);
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "InstanceNormRun error task_id[" << task_id << "] error_code[" << ret << "]";
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
kernel::LiteKernel *CpuInstanceNormKernelCreator(const std::vector<lite::Tensor *> &inputs,
|
||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
||||
const lite::InnerContext *ctx, const kernel::KernelKey &desc,
|
||||
const mindspore::lite::PrimitiveC *primitive) {
|
||||
MS_ASSERT(opParameter != nullptr);
|
||||
auto *kernel = new (std::nothrow) InstanceNormCPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
||||
if (kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "new InstanceNormCPUKernel fail!";
|
||||
free(opParameter);
|
||||
return nullptr;
|
||||
}
|
||||
auto ret = kernel->Init();
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
||||
delete kernel;
|
||||
return nullptr;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_InstanceNorm, CpuInstanceNormKernelCreator)
|
||||
} // namespace mindspore::kernel
|
@ -0,0 +1,46 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_INSTANCE_NORM_H_
|
||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_INSTANCE_NORM_H_
|
||||
|
||||
#include <vector>
|
||||
#include "src/lite_kernel.h"
|
||||
#include "include/context.h"
|
||||
#include "nnacl/instance_norm_parameter.h"
|
||||
#include "src/runtime/runtime_api.h"
|
||||
|
||||
using mindspore::lite::InnerContext;
|
||||
|
||||
namespace mindspore::kernel {
|
||||
class InstanceNormCPUKernel : public LiteKernel {
|
||||
public:
|
||||
InstanceNormCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
||||
const std::vector<lite::Tensor *> &outputs, const InnerContext *ctx,
|
||||
const mindspore::lite::PrimitiveC *primitive)
|
||||
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {}
|
||||
~InstanceNormCPUKernel() override = default;
|
||||
|
||||
int Init() override;
|
||||
int ReSize() override;
|
||||
int Run() override;
|
||||
virtual int DoExecute(int task_id);
|
||||
};
|
||||
|
||||
int InstanceNormRun(void *cdata, int task_id);
|
||||
} // namespace mindspore::kernel
|
||||
|
||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_INSTANCE_NORM_H_
|
@ -0,0 +1,134 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include <iostream>
|
||||
#include "src/common/log_adapter.h"
|
||||
#include "common/common_test.h"
|
||||
#include "mindspore/lite/nnacl/fp32/instance_norm.h"
|
||||
#include "mindspore/lite/src/kernel_registry.h"
|
||||
#include "mindspore/lite/src/lite_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
class TestInstanceNormFp32 : public mindspore::CommonTest {
|
||||
public:
|
||||
TestInstanceNormFp32() {}
|
||||
};
|
||||
|
||||
TEST_F(TestInstanceNormFp32, INTest1) {
|
||||
std::vector<float> in_data = {-11.18675, 11.433986, 11.386012, 11.245945, -2.7614849, 14.692399,
|
||||
-1.1983503, -6.6790967, 6.383416, -13.3213005, -8.693595, 9.476344};
|
||||
std::vector<float> in_data1 = {12.352293, 5.122387, 14.249514};
|
||||
std::vector<float> in_data2 = {14.632595, 0.70900035, 11.179003};
|
||||
|
||||
InstanceNormParameter op_param;
|
||||
op_param.op_parameter_.type_ = schema::PrimitiveType_InstanceNorm;
|
||||
op_param.epsilon_ = 0.001f;
|
||||
|
||||
lite::Tensor input0_tensor(kNumberTypeFloat32, {1, 2, 2, 3});
|
||||
lite::Tensor input1_tensor(kNumberTypeFloat32, {3});
|
||||
lite::Tensor input2_tensor(kNumberTypeFloat32, {3});
|
||||
input0_tensor.SetData(in_data.data());
|
||||
input1_tensor.SetData(in_data1.data());
|
||||
input2_tensor.SetData(in_data2.data());
|
||||
std::vector<lite::Tensor *> inputs_tensor = {&input0_tensor, &input1_tensor, &input2_tensor};
|
||||
|
||||
std::vector<float> output(12);
|
||||
std::vector<float> corr_out = {-6.1533737, 7.4904885, -0.8563998, -0.289212, -9.356432, 0.13245535,
|
||||
-3.5422924, -14.005781, -2.3525476, -6.7113695, -16.396551, -1.4275324};
|
||||
|
||||
lite::Tensor output0_tensor(kNumberTypeFloat32, {1, 2, 2, 3});
|
||||
output0_tensor.SetData(output.data());
|
||||
std::vector<lite::Tensor *> outputs_tensor = {&output0_tensor};
|
||||
|
||||
kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeFloat32, schema::PrimitiveType_InstanceNorm};
|
||||
auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc);
|
||||
ASSERT_NE(creator, nullptr);
|
||||
lite::InnerContext ctx;
|
||||
ctx.thread_num_ = 4;
|
||||
ASSERT_EQ(lite::RET_OK, ctx.Init());
|
||||
kernel::LiteKernel *kernel =
|
||||
creator(inputs_tensor, outputs_tensor, reinterpret_cast<OpParameter *>(&op_param), &ctx, desc, nullptr);
|
||||
ASSERT_NE(kernel, nullptr);
|
||||
auto output_tensor_shape = output0_tensor.shape();
|
||||
kernel->Run();
|
||||
|
||||
printf("==================output data=================\n");
|
||||
for (int i = 0; i < output0_tensor.ElementsNum(); i++) {
|
||||
std::cout << output[i] << " ,";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
CompareOutputData(output.data(), corr_out.data(), output0_tensor.ElementsNum(), 0.001);
|
||||
|
||||
input0_tensor.SetData(nullptr);
|
||||
input1_tensor.SetData(nullptr);
|
||||
input2_tensor.SetData(nullptr);
|
||||
output0_tensor.SetData(nullptr);
|
||||
}
|
||||
|
||||
TEST_F(TestInstanceNormFp32, INTest2) {
|
||||
std::vector<float> in_data = {-11.18675, 11.433986, 11.386012, 11.245945, -2.7614849, 14.692399,
|
||||
-1.1983503, -6.6790967, 6.383416, -13.3213005, -8.693595, 9.476344,
|
||||
-11.18675, 11.433986, 11.386012, 11.245945, -2.7614849, 14.692399,
|
||||
-1.1983503, -6.6790967, 6.383416, -13.3213005, -8.693595, 9.476344};
|
||||
std::vector<float> in_data1 = {12.352293, 5.122387, 14.249514, 12.352293, 5.122387, 14.249514};
|
||||
std::vector<float> in_data2 = {14.632595, 0.70900035, 11.179003, 14.632595, 0.70900035, 11.179003};
|
||||
|
||||
InstanceNormParameter op_param;
|
||||
op_param.op_parameter_.type_ = schema::PrimitiveType_InstanceNorm;
|
||||
op_param.epsilon_ = 0.001f;
|
||||
|
||||
lite::Tensor input0_tensor(kNumberTypeFloat32, {2, 2, 2, 3});
|
||||
lite::Tensor input1_tensor(kNumberTypeFloat32, {6});
|
||||
lite::Tensor input2_tensor(kNumberTypeFloat32, {6});
|
||||
input0_tensor.SetData(in_data.data());
|
||||
input1_tensor.SetData(in_data1.data());
|
||||
input2_tensor.SetData(in_data2.data());
|
||||
std::vector<lite::Tensor *> inputs_tensor = {&input0_tensor, &input1_tensor, &input2_tensor};
|
||||
|
||||
std::vector<float> output(24);
|
||||
std::vector<float> corr_out = {-6.1533737, 7.4904885, -0.8563998, -0.289212, -9.356432, 0.13245535,
|
||||
-3.5422924, -14.005781, -2.3525476, -6.7113695, -16.396551, -1.4275324,
|
||||
-6.1533737, 7.4904885, -0.8563998, -0.289212, -9.356432, 0.13245535,
|
||||
-3.5422924, -14.005781, -2.3525476, -6.7113695, -16.396551, -1.4275324};
|
||||
|
||||
lite::Tensor output0_tensor(kNumberTypeFloat32, {2, 2, 2, 3});
|
||||
output0_tensor.SetData(output.data());
|
||||
std::vector<lite::Tensor *> outputs_tensor = {&output0_tensor};
|
||||
|
||||
kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeFloat32, schema::PrimitiveType_InstanceNorm};
|
||||
auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc);
|
||||
ASSERT_NE(creator, nullptr);
|
||||
lite::InnerContext ctx;
|
||||
ctx.thread_num_ = 4;
|
||||
ASSERT_EQ(lite::RET_OK, ctx.Init());
|
||||
kernel::LiteKernel *kernel =
|
||||
creator(inputs_tensor, outputs_tensor, reinterpret_cast<OpParameter *>(&op_param), &ctx, desc, nullptr);
|
||||
ASSERT_NE(kernel, nullptr);
|
||||
auto output_tensor_shape = output0_tensor.shape();
|
||||
kernel->Run();
|
||||
|
||||
printf("==================output data=================\n");
|
||||
for (int i = 0; i < output0_tensor.ElementsNum(); i++) {
|
||||
std::cout << output[i] << " ,";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
CompareOutputData(output.data(), corr_out.data(), output0_tensor.ElementsNum(), 0.001);
|
||||
|
||||
input0_tensor.SetData(nullptr);
|
||||
input1_tensor.SetData(nullptr);
|
||||
input2_tensor.SetData(nullptr);
|
||||
output0_tensor.SetData(nullptr);
|
||||
}
|
||||
} // namespace mindspore
|
Loading…
Reference in new issue