update cifar10 dataset fixing missing error handling code in validatorpull/3039/head
parent
089623ad19
commit
340d98a4d1
@ -1,21 +0,0 @@
|
||||
{
|
||||
"datasetType": "CIFAR100",
|
||||
"numRows": 100,
|
||||
"columns": {
|
||||
"image": {
|
||||
"type": "uint8",
|
||||
"rank": 1,
|
||||
"t_impl": "cvmat"
|
||||
},
|
||||
"coarse_label" : {
|
||||
"type": "uint32",
|
||||
"rank": 1,
|
||||
"t_impl": "flex"
|
||||
},
|
||||
"fine_label" : {
|
||||
"type": "uint32",
|
||||
"rank": 1,
|
||||
"t_impl": "flex"
|
||||
}
|
||||
}
|
||||
}
|
@ -1,21 +0,0 @@
|
||||
{
|
||||
"datasetType": "CIFAR100",
|
||||
"numRows": 33,
|
||||
"columns": {
|
||||
"image": {
|
||||
"type": "uint8",
|
||||
"rank": 1,
|
||||
"t_impl": "cvmat"
|
||||
},
|
||||
"coarse_label" : {
|
||||
"type": "uint32",
|
||||
"rank": 1,
|
||||
"t_impl": "flex"
|
||||
},
|
||||
"fine_label" : {
|
||||
"type": "uint32",
|
||||
"rank": 1,
|
||||
"t_impl": "flex"
|
||||
}
|
||||
}
|
||||
}
|
Binary file not shown.
@ -1,9 +0,0 @@
|
||||
{
|
||||
"deviceNum" : 3,
|
||||
"deviceId" : 1,
|
||||
"shardConfig" : "ALL",
|
||||
"shuffle" : "ON",
|
||||
"seed" : 0,
|
||||
"epoch" : 2
|
||||
}
|
||||
|
@ -1,9 +0,0 @@
|
||||
{
|
||||
"deviceNum" : 3,
|
||||
"deviceId" : 1,
|
||||
"shardConfig" : "RANDOM",
|
||||
"shuffle" : "ON",
|
||||
"seed" : 0,
|
||||
"epoch" : 1
|
||||
}
|
||||
|
@ -1,9 +0,0 @@
|
||||
{
|
||||
"deviceNum" : 3,
|
||||
"deviceId" : 1,
|
||||
"shardConfig" : "UNIQUE",
|
||||
"shuffle" : "ON",
|
||||
"seed" : 0,
|
||||
"epoch" : 3
|
||||
}
|
||||
|
@ -1,16 +0,0 @@
|
||||
{
|
||||
"datasetType": "CIFAR10",
|
||||
"numRows": 60000,
|
||||
"columns": {
|
||||
"image": {
|
||||
"type": "uint8",
|
||||
"rank": 1,
|
||||
"t_impl": "cvmat"
|
||||
},
|
||||
"label" : {
|
||||
"type": "uint32",
|
||||
"rank": 1,
|
||||
"t_impl": "flex"
|
||||
}
|
||||
}
|
||||
}
|
@ -1,16 +0,0 @@
|
||||
{
|
||||
"datasetType": "CIFAR10",
|
||||
"numRows": 33,
|
||||
"columns": {
|
||||
"image": {
|
||||
"type": "uint8",
|
||||
"rank": 1,
|
||||
"t_impl": "cvmat"
|
||||
},
|
||||
"label" : {
|
||||
"type": "uint32",
|
||||
"rank": 1,
|
||||
"t_impl": "flex"
|
||||
}
|
||||
}
|
||||
}
|
@ -1,91 +0,0 @@
|
||||
# Copyright 2019 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
|
||||
import mindspore.dataset as ds
|
||||
from mindspore import log as logger
|
||||
|
||||
# Data for CIFAR and MNIST are not part of build tree
|
||||
# They need to be downloaded directly
|
||||
# prep_data.py can be executed or code below
|
||||
# import sys
|
||||
# sys.path.insert(0,"../../data")
|
||||
# import prep_data
|
||||
# prep_data.download_all_for_test("../../data")
|
||||
DATA_DIR_10 = "../data/dataset/testCifar10Data"
|
||||
DATA_DIR_100 = "../data/dataset/testCifar100Data"
|
||||
|
||||
|
||||
def load_cifar(path):
|
||||
raw = np.empty(0, dtype=np.uint8)
|
||||
for file_name in os.listdir(path):
|
||||
if file_name.endswith(".bin"):
|
||||
with open(os.path.join(path, file_name), mode='rb') as file:
|
||||
raw = np.append(raw, np.fromfile(file, dtype=np.uint8), axis=0)
|
||||
raw = raw.reshape(-1, 3073)
|
||||
labels = raw[:, 0]
|
||||
images = raw[:, 1:]
|
||||
images = images.reshape(-1, 3, 32, 32)
|
||||
images = images.transpose(0, 2, 3, 1)
|
||||
return images, labels
|
||||
|
||||
|
||||
def test_case_dataset_cifar10():
|
||||
"""
|
||||
dataset parameter
|
||||
"""
|
||||
logger.info("Test dataset parameter")
|
||||
# apply dataset operations
|
||||
data1 = ds.Cifar10Dataset(DATA_DIR_10, 100)
|
||||
|
||||
num_iter = 0
|
||||
for _ in data1.create_dict_iterator():
|
||||
# in this example, each dictionary has keys "image" and "label"
|
||||
num_iter += 1
|
||||
assert num_iter == 100
|
||||
|
||||
|
||||
def test_case_dataset_cifar100():
|
||||
"""
|
||||
dataset parameter
|
||||
"""
|
||||
logger.info("Test dataset parameter")
|
||||
# apply dataset operations
|
||||
data1 = ds.Cifar100Dataset(DATA_DIR_100, 100)
|
||||
|
||||
num_iter = 0
|
||||
for _ in data1.create_dict_iterator():
|
||||
# in this example, each dictionary has keys "image" and "label"
|
||||
num_iter += 1
|
||||
assert num_iter == 100
|
||||
|
||||
|
||||
def test_reading_cifar10():
|
||||
"""
|
||||
Validate CIFAR10 image readings
|
||||
"""
|
||||
data1 = ds.Cifar10Dataset(DATA_DIR_10, 100, shuffle=False)
|
||||
images, labels = load_cifar(DATA_DIR_10)
|
||||
for i, d in enumerate(data1.create_dict_iterator()):
|
||||
np.testing.assert_array_equal(d["image"], images[i])
|
||||
np.testing.assert_array_equal(d["label"], labels[i])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_case_dataset_cifar10()
|
||||
test_case_dataset_cifar100()
|
||||
test_reading_cifar10()
|
File diff suppressed because it is too large
Load Diff
Loading…
Reference in new issue