new add l2normalize_grad gpu ops.

pull/7826/head
linqingke 4 years ago
parent 7f343e404a
commit 3465c9c400

@ -159,19 +159,19 @@ class L2NormalizeGpuKernel : public GpuKernel {
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnGetTensorSizeInBytes(inputA_descriptor_, &input_size_),
"cudnnGetTensorSizeInBytes failed.");
input_size_list_.push_back(input_size_);
MS_LOG(ERROR) << "input size: " << input_size_;
output_size_list_.push_back(output_size_);
MS_LOG(ERROR) << "output size: " << output_size_;
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnGetTensorSizeInBytes(outputC_descriptor_, &workspace_size_),
"cudnnGetTensorSizeInBytes failed.");
workspace_size_list_.push_back(workspace_size_);
MS_LOG(ERROR) << "workspace_size_1 size: " << workspace_size_;
CHECK_CUDNN_RET_WITH_EXCEPT(
cudnnGetReductionWorkspaceSize(cudnn_handle_, reduce_tensor_descriptor_, inputA_descriptor_, outputC_descriptor_,
&workspace_size_),
"cudnnGetReductionWorkspaceSize failed.");
workspace_size_list_.push_back(workspace_size_);
MS_LOG(ERROR) << "workspace_size_2 size: " << workspace_size_;
return;
}

@ -0,0 +1,43 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/gpu/nn/l2normalize_grad_gpu_kernel.h"
namespace mindspore {
namespace kernel {
MS_REG_GPU_KERNEL_ONE(L2NormalizeGrad,
KernelAttr()
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddOutputAttr(kNumberTypeFloat32),
L2NormalizeGradGpuKernel, float)
MS_REG_GPU_KERNEL_ONE(L2NormalizeGrad,
KernelAttr()
.AddInputAttr(kNumberTypeFloat16)
.AddInputAttr(kNumberTypeFloat16)
.AddInputAttr(kNumberTypeFloat16)
.AddOutputAttr(kNumberTypeFloat16),
L2NormalizeGradGpuKernel, half)
MS_REG_GPU_KERNEL_ONE(L2NormalizeGrad,
KernelAttr()
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt32)
.AddOutputAttr(kNumberTypeInt32),
L2NormalizeGradGpuKernel, int)
} // namespace kernel
} // namespace mindspore

@ -0,0 +1,52 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
from mindspore.common.tensor import Tensor
from mindspore.nn import Cell
from mindspore.ops.operations import _grad_ops as G
class Net(Cell):
def __init__(self, axis=0, epsilon=1e-12):
super(Net, self).__init__()
self.norm_grad = G.L2NormalizeGrad(axis=axis, epsilon=epsilon)
def construct(self, x, out, dout):
return self.norm_grad(x, out, dout)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_l2normalize_grad():
axis_ = 0
x = np.random.randint(1, 10, (2, 3, 4, 4)).astype(np.float32)
y = x / np.sqrt(np.sum(x**2, axis=axis_, keepdims=True))
dy = np.random.randint(1, 10, (2, 3, 4, 4)).astype(np.float32)
expect = (dy - y * np.sum(y * dy, axis=axis_, keepdims=True)) / np.sqrt(np.sum(x**2, axis=axis_, keepdims=True))
x = Tensor(x)
y = Tensor(y)
dy = Tensor(dy)
error = np.ones(shape=[2, 3, 4, 4]) * 1.0e-5
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
norm_grad_op = Net(axis=axis_)
output = norm_grad_op(x, y, dy)
diff = output.asnumpy() - expect
assert np.all(diff < error)
assert np.all(-diff < error)
Loading…
Cancel
Save