parent
7f343e404a
commit
3465c9c400
@ -0,0 +1,43 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/gpu/nn/l2normalize_grad_gpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
MS_REG_GPU_KERNEL_ONE(L2NormalizeGrad,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeFloat32),
|
||||
L2NormalizeGradGpuKernel, float)
|
||||
MS_REG_GPU_KERNEL_ONE(L2NormalizeGrad,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddOutputAttr(kNumberTypeFloat16),
|
||||
L2NormalizeGradGpuKernel, half)
|
||||
MS_REG_GPU_KERNEL_ONE(L2NormalizeGrad,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeInt32),
|
||||
L2NormalizeGradGpuKernel, int)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,52 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
from mindspore.common.tensor import Tensor
|
||||
from mindspore.nn import Cell
|
||||
from mindspore.ops.operations import _grad_ops as G
|
||||
|
||||
class Net(Cell):
|
||||
def __init__(self, axis=0, epsilon=1e-12):
|
||||
super(Net, self).__init__()
|
||||
self.norm_grad = G.L2NormalizeGrad(axis=axis, epsilon=epsilon)
|
||||
|
||||
def construct(self, x, out, dout):
|
||||
return self.norm_grad(x, out, dout)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_l2normalize_grad():
|
||||
axis_ = 0
|
||||
x = np.random.randint(1, 10, (2, 3, 4, 4)).astype(np.float32)
|
||||
y = x / np.sqrt(np.sum(x**2, axis=axis_, keepdims=True))
|
||||
dy = np.random.randint(1, 10, (2, 3, 4, 4)).astype(np.float32)
|
||||
expect = (dy - y * np.sum(y * dy, axis=axis_, keepdims=True)) / np.sqrt(np.sum(x**2, axis=axis_, keepdims=True))
|
||||
x = Tensor(x)
|
||||
y = Tensor(y)
|
||||
dy = Tensor(dy)
|
||||
error = np.ones(shape=[2, 3, 4, 4]) * 1.0e-5
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
norm_grad_op = Net(axis=axis_)
|
||||
output = norm_grad_op(x, y, dy)
|
||||
diff = output.asnumpy() - expect
|
||||
assert np.all(diff < error)
|
||||
assert np.all(-diff < error)
|
Loading…
Reference in new issue