parent
3159fb462c
commit
352a362878
@ -0,0 +1,43 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
from mindspore import Tensor
|
||||
import mindspore.ops.operations._grad_ops as P
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
np.random.seed(1)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_acoshgrad_fp32():
|
||||
y_np = np.random.rand(4, 2).astype(np.float32) * 10
|
||||
dout_np = np.random.rand(4, 2).astype(np.float32) * 10
|
||||
output_ms = P.AcoshGrad()(Tensor(y_np), Tensor(dout_np))
|
||||
output_np = dout_np / np.sinh(y_np)
|
||||
assert np.allclose(output_ms.asnumpy(), output_np, 1e-4, 1e-4)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_acoshgrad_fp16():
|
||||
y_np = np.random.rand(4, 2).astype(np.float16) * 10
|
||||
dout_np = np.random.rand(4, 2).astype(np.float16) * 10
|
||||
output_ms = P.AcoshGrad()(Tensor(y_np), Tensor(dout_np))
|
||||
output_np = dout_np.astype(np.float32) / np.sinh(y_np).astype(np.float32)
|
||||
assert np.allclose(output_ms.asnumpy(), output_np.astype(np.float16), 1e-3, 1e-3)
|
@ -0,0 +1,41 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
np.random.seed(1)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_acosh_fp32():
|
||||
x_np = np.random.rand(4, 2).astype(np.float32) * 10 + 1
|
||||
output_ms = P.Acosh()(Tensor(x_np))
|
||||
output_np = np.arccosh(x_np)
|
||||
assert np.allclose(output_ms.asnumpy(), output_np, 1e-4, 1e-4)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_acosh_fp16():
|
||||
x_np = np.random.rand(4, 2).astype(np.float16) * 10 + 1
|
||||
output_ms = P.Acosh()(Tensor(x_np))
|
||||
output_np = np.arccosh(x_np.astype(np.float32)).astype(np.float16)
|
||||
assert np.allclose(output_ms.asnumpy(), output_np, 1e-3, 1e-3)
|
@ -0,0 +1,43 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
from mindspore import Tensor
|
||||
import mindspore.ops.operations._grad_ops as P
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
np.random.seed(1)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_asinhgrad_fp32():
|
||||
y_np = np.random.rand(4, 2).astype(np.float32) * 10
|
||||
dout_np = np.random.rand(4, 2).astype(np.float32) * 10
|
||||
output_ms = P.AsinhGrad()(Tensor(y_np), Tensor(dout_np))
|
||||
output_np = dout_np / np.cosh(y_np)
|
||||
assert np.allclose(output_ms.asnumpy(), output_np, 1e-4, 1e-4)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_asinhgrad_fp16():
|
||||
y_np = np.random.rand(4, 2).astype(np.float16) * 10
|
||||
dout_np = np.random.rand(4, 2).astype(np.float16) * 10
|
||||
output_ms = P.AsinhGrad()(Tensor(y_np), Tensor(dout_np))
|
||||
output_np = dout_np.astype(np.float32) / np.cosh(y_np).astype(np.float32)
|
||||
assert np.allclose(output_ms.asnumpy(), output_np.astype(np.float16), 1e-3, 1e-3)
|
@ -0,0 +1,41 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
np.random.seed(1)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_asinh_fp32():
|
||||
x_np = np.random.rand(4, 2).astype(np.float32) * 10
|
||||
output_ms = P.Asinh()(Tensor(x_np))
|
||||
output_np = np.arcsinh(x_np)
|
||||
assert np.allclose(output_ms.asnumpy(), output_np, 1e-4, 1e-4)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_asinh_fp16():
|
||||
x_np = np.random.rand(4, 2).astype(np.float16) * 10
|
||||
output_ms = P.Asinh()(Tensor(x_np))
|
||||
output_np = np.arcsinh(x_np.astype(np.float32)).astype(np.float16)
|
||||
assert np.allclose(output_ms.asnumpy(), output_np, 1e-3, 1e-3)
|
@ -0,0 +1,43 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
from mindspore import Tensor
|
||||
import mindspore.ops.operations._grad_ops as P
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
np.random.seed(1)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_atangrad_fp32():
|
||||
x_np = np.random.rand(4, 2).astype(np.float32) * 10
|
||||
dout_np = np.random.rand(4, 2).astype(np.float32) * 10
|
||||
output_ms = P.AtanGrad()(Tensor(x_np), Tensor(dout_np))
|
||||
output_np = dout_np / (1 + np.square(x_np))
|
||||
assert np.allclose(output_ms.asnumpy(), output_np, 1e-4, 1e-4)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_atangrad_fp16():
|
||||
x_np = np.random.rand(4, 2).astype(np.float16) * 10
|
||||
dout_np = np.random.rand(4, 2).astype(np.float16) * 10
|
||||
output_ms = P.AtanGrad()(Tensor(x_np), Tensor(dout_np))
|
||||
output_np = dout_np.astype(np.float32) / (1 + np.square(x_np.astype(np.float32)))
|
||||
assert np.allclose(output_ms.asnumpy(), output_np.astype(np.float16), 1e-3, 1e-3)
|
@ -0,0 +1,41 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
np.random.seed(1)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_atan_fp32():
|
||||
x_np = np.random.rand(4, 2).astype(np.float32) * 10
|
||||
output_ms = P.Atan()(Tensor(x_np))
|
||||
output_np = np.arctan(x_np)
|
||||
assert np.allclose(output_ms.asnumpy(), output_np, 1e-4, 1e-4)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_atan_fp16():
|
||||
x_np = np.random.rand(4, 2).astype(np.float16) * 10
|
||||
output_ms = P.Atan()(Tensor(x_np))
|
||||
output_np = np.arctan(x_np.astype(np.float32)).astype(np.float16)
|
||||
assert np.allclose(output_ms.asnumpy(), output_np, 1e-3, 1e-3)
|
Loading…
Reference in new issue