parent
28772d4fb7
commit
37d40bc495
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,245 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""test cases for Beta distribution"""
|
||||
import numpy as np
|
||||
from scipy import stats
|
||||
from scipy import special
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
import mindspore.nn.probability.distribution as msd
|
||||
from mindspore import Tensor
|
||||
from mindspore import dtype
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
class Prob(nn.Cell):
|
||||
"""
|
||||
Test class: probability of Beta distribution.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(Prob, self).__init__()
|
||||
self.b = msd.Beta(np.array([3.0]), np.array([1.0]), dtype=dtype.float32)
|
||||
|
||||
def construct(self, x_):
|
||||
return self.b.prob(x_)
|
||||
|
||||
def test_pdf():
|
||||
"""
|
||||
Test pdf.
|
||||
"""
|
||||
beta_benchmark = stats.beta(np.array([3.0]), np.array([1.0]))
|
||||
expect_pdf = beta_benchmark.pdf([0.25, 0.75]).astype(np.float32)
|
||||
pdf = Prob()
|
||||
output = pdf(Tensor([0.25, 0.75], dtype=dtype.float32))
|
||||
tol = 1e-6
|
||||
assert (np.abs(output.asnumpy() - expect_pdf) < tol).all()
|
||||
|
||||
class LogProb(nn.Cell):
|
||||
"""
|
||||
Test class: log probability of Beta distribution.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(LogProb, self).__init__()
|
||||
self.b = msd.Beta(np.array([3.0]), np.array([1.0]), dtype=dtype.float32)
|
||||
|
||||
def construct(self, x_):
|
||||
return self.b.log_prob(x_)
|
||||
|
||||
def test_log_likelihood():
|
||||
"""
|
||||
Test log_pdf.
|
||||
"""
|
||||
beta_benchmark = stats.beta(np.array([3.0]), np.array([1.0]))
|
||||
expect_logpdf = beta_benchmark.logpdf([0.25, 0.75]).astype(np.float32)
|
||||
logprob = LogProb()
|
||||
output = logprob(Tensor([0.25, 0.75], dtype=dtype.float32))
|
||||
tol = 1e-6
|
||||
assert (np.abs(output.asnumpy() - expect_logpdf) < tol).all()
|
||||
|
||||
class KL(nn.Cell):
|
||||
"""
|
||||
Test class: kl_loss of Beta distribution.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(KL, self).__init__()
|
||||
self.b = msd.Beta(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
|
||||
|
||||
def construct(self, x_, y_):
|
||||
return self.b.kl_loss('Beta', x_, y_)
|
||||
|
||||
def test_kl_loss():
|
||||
"""
|
||||
Test kl_loss.
|
||||
"""
|
||||
concentration1_a = np.array([3.0]).astype(np.float32)
|
||||
concentration0_a = np.array([4.0]).astype(np.float32)
|
||||
|
||||
concentration1_b = np.array([1.0]).astype(np.float32)
|
||||
concentration0_b = np.array([1.0]).astype(np.float32)
|
||||
|
||||
total_concentration_a = concentration1_a + concentration0_a
|
||||
total_concentration_b = concentration1_b + concentration0_b
|
||||
log_normalization_a = np.log(special.beta(concentration1_a, concentration0_a))
|
||||
log_normalization_b = np.log(special.beta(concentration1_b, concentration0_b))
|
||||
expect_kl_loss = (log_normalization_b - log_normalization_a) \
|
||||
- (special.digamma(concentration1_a) * (concentration1_b - concentration1_a)) \
|
||||
- (special.digamma(concentration0_a) * (concentration0_b - concentration0_a)) \
|
||||
+ (special.digamma(total_concentration_a) * (total_concentration_b - total_concentration_a))
|
||||
|
||||
kl_loss = KL()
|
||||
concentration1 = Tensor(concentration1_b, dtype=dtype.float32)
|
||||
concentration0 = Tensor(concentration0_b, dtype=dtype.float32)
|
||||
output = kl_loss(concentration1, concentration0)
|
||||
tol = 1e-6
|
||||
assert (np.abs(output.asnumpy() - expect_kl_loss) < tol).all()
|
||||
|
||||
class Basics(nn.Cell):
|
||||
"""
|
||||
Test class: mean/sd/mode of Beta distribution.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(Basics, self).__init__()
|
||||
self.b = msd.Beta(np.array([3.0]), np.array([3.0]), dtype=dtype.float32)
|
||||
|
||||
def construct(self):
|
||||
return self.b.mean(), self.b.sd(), self.b.mode()
|
||||
|
||||
def test_basics():
|
||||
"""
|
||||
Test mean/standard deviation/mode.
|
||||
"""
|
||||
basics = Basics()
|
||||
mean, sd, mode = basics()
|
||||
beta_benchmark = stats.beta(np.array([3.0]), np.array([3.0]))
|
||||
expect_mean = beta_benchmark.mean().astype(np.float32)
|
||||
expect_sd = beta_benchmark.std().astype(np.float32)
|
||||
expect_mode = [0.5]
|
||||
tol = 1e-6
|
||||
assert (np.abs(mean.asnumpy() - expect_mean) < tol).all()
|
||||
assert (np.abs(mode.asnumpy() - expect_mode) < tol).all()
|
||||
assert (np.abs(sd.asnumpy() - expect_sd) < tol).all()
|
||||
|
||||
class Sampling(nn.Cell):
|
||||
"""
|
||||
Test class: sample of Beta distribution.
|
||||
"""
|
||||
def __init__(self, shape, seed=0):
|
||||
super(Sampling, self).__init__()
|
||||
self.b = msd.Beta(np.array([3.0]), np.array([1.0]), seed=seed, dtype=dtype.float32)
|
||||
self.shape = shape
|
||||
|
||||
def construct(self, concentration1=None, concentration0=None):
|
||||
return self.b.sample(self.shape, concentration1, concentration0)
|
||||
|
||||
def test_sample():
|
||||
"""
|
||||
Test sample.
|
||||
"""
|
||||
shape = (2, 3)
|
||||
seed = 10
|
||||
concentration1 = Tensor([2.0], dtype=dtype.float32)
|
||||
concentration0 = Tensor([2.0, 2.0, 2.0], dtype=dtype.float32)
|
||||
sample = Sampling(shape, seed=seed)
|
||||
output = sample(concentration1, concentration0)
|
||||
assert output.shape == (2, 3, 3)
|
||||
|
||||
class EntropyH(nn.Cell):
|
||||
"""
|
||||
Test class: entropy of Beta distribution.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(EntropyH, self).__init__()
|
||||
self.b = msd.Beta(np.array([3.0]), np.array([1.0]), dtype=dtype.float32)
|
||||
|
||||
def construct(self):
|
||||
return self.b.entropy()
|
||||
|
||||
def test_entropy():
|
||||
"""
|
||||
Test entropy.
|
||||
"""
|
||||
beta_benchmark = stats.beta(np.array([3.0]), np.array([1.0]))
|
||||
expect_entropy = beta_benchmark.entropy().astype(np.float32)
|
||||
entropy = EntropyH()
|
||||
output = entropy()
|
||||
tol = 1e-6
|
||||
assert (np.abs(output.asnumpy() - expect_entropy) < tol).all()
|
||||
|
||||
class CrossEntropy(nn.Cell):
|
||||
"""
|
||||
Test class: cross entropy between Beta distributions.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(CrossEntropy, self).__init__()
|
||||
self.b = msd.Beta(np.array([3.0]), np.array([1.0]), dtype=dtype.float32)
|
||||
|
||||
def construct(self, x_, y_):
|
||||
entropy = self.b.entropy()
|
||||
kl_loss = self.b.kl_loss('Beta', x_, y_)
|
||||
h_sum_kl = entropy + kl_loss
|
||||
cross_entropy = self.b.cross_entropy('Beta', x_, y_)
|
||||
return h_sum_kl - cross_entropy
|
||||
|
||||
def test_cross_entropy():
|
||||
"""
|
||||
Test cross_entropy.
|
||||
"""
|
||||
cross_entropy = CrossEntropy()
|
||||
concentration1 = Tensor([3.0], dtype=dtype.float32)
|
||||
concentration0 = Tensor([2.0], dtype=dtype.float32)
|
||||
diff = cross_entropy(concentration1, concentration0)
|
||||
tol = 1e-6
|
||||
assert (np.abs(diff.asnumpy() - np.zeros(diff.shape)) < tol).all()
|
||||
|
||||
class Net(nn.Cell):
|
||||
"""
|
||||
Test class: expand single distribution instance to multiple graphs
|
||||
by specifying the attributes.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.beta = msd.Beta(np.array([3.0]), np.array([1.0]), dtype=dtype.float32)
|
||||
|
||||
def construct(self, x_, y_):
|
||||
kl = self.beta.kl_loss('Beta', x_, y_)
|
||||
prob = self.beta.prob(kl)
|
||||
return prob
|
||||
|
||||
def test_multiple_graphs():
|
||||
"""
|
||||
Test multiple graphs case.
|
||||
"""
|
||||
prob = Net()
|
||||
concentration1_a = np.array([3.0]).astype(np.float32)
|
||||
concentration0_a = np.array([1.0]).astype(np.float32)
|
||||
concentration1_b = np.array([2.0]).astype(np.float32)
|
||||
concentration0_b = np.array([1.0]).astype(np.float32)
|
||||
ans = prob(Tensor(concentration1_b), Tensor(concentration0_b))
|
||||
|
||||
total_concentration_a = concentration1_a + concentration0_a
|
||||
total_concentration_b = concentration1_b + concentration0_b
|
||||
log_normalization_a = np.log(special.beta(concentration1_a, concentration0_a))
|
||||
log_normalization_b = np.log(special.beta(concentration1_b, concentration0_b))
|
||||
expect_kl_loss = (log_normalization_b - log_normalization_a) \
|
||||
- (special.digamma(concentration1_a) * (concentration1_b - concentration1_a)) \
|
||||
- (special.digamma(concentration0_a) * (concentration0_b - concentration0_a)) \
|
||||
+ (special.digamma(total_concentration_a) * (total_concentration_b - total_concentration_a))
|
||||
|
||||
beta_benchmark = stats.beta(np.array([3.0]), np.array([1.0]))
|
||||
expect_prob = beta_benchmark.pdf(expect_kl_loss).astype(np.float32)
|
||||
|
||||
tol = 1e-6
|
||||
assert (np.abs(ans.asnumpy() - expect_prob) < tol).all()
|
@ -0,0 +1,212 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
Test nn.probability.distribution.Gamma.
|
||||
"""
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.nn as nn
|
||||
import mindspore.nn.probability.distribution as msd
|
||||
from mindspore import dtype
|
||||
from mindspore import Tensor
|
||||
|
||||
def test_gamma_shape_errpr():
|
||||
"""
|
||||
Invalid shapes.
|
||||
"""
|
||||
with pytest.raises(ValueError):
|
||||
msd.Gamma([[2.], [1.]], [[2.], [3.], [4.]], dtype=dtype.float32)
|
||||
|
||||
def test_type():
|
||||
with pytest.raises(TypeError):
|
||||
msd.Gamma(0., 1., dtype=dtype.int32)
|
||||
|
||||
def test_name():
|
||||
with pytest.raises(TypeError):
|
||||
msd.Gamma(0., 1., name=1.0)
|
||||
|
||||
def test_seed():
|
||||
with pytest.raises(TypeError):
|
||||
msd.Gamma(0., 1., seed='seed')
|
||||
|
||||
def test_concentration1():
|
||||
with pytest.raises(ValueError):
|
||||
msd.Gamma(0., 1.)
|
||||
with pytest.raises(ValueError):
|
||||
msd.Gamma(-1., 1.)
|
||||
|
||||
def test_concentration0():
|
||||
with pytest.raises(ValueError):
|
||||
msd.Gamma(1., 0.)
|
||||
with pytest.raises(ValueError):
|
||||
msd.Gamma(1., -1.)
|
||||
|
||||
def test_arguments():
|
||||
"""
|
||||
args passing during initialization.
|
||||
"""
|
||||
g = msd.Gamma()
|
||||
assert isinstance(g, msd.Distribution)
|
||||
g = msd.Gamma([3.0], [4.0], dtype=dtype.float32)
|
||||
assert isinstance(g, msd.Distribution)
|
||||
|
||||
|
||||
class GammaProb(nn.Cell):
|
||||
"""
|
||||
Gamma distribution: initialize with concentration1/concentration0.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(GammaProb, self).__init__()
|
||||
self.gamma = msd.Gamma([3.0, 4.0], [1.0, 1.0], dtype=dtype.float32)
|
||||
|
||||
def construct(self, value):
|
||||
prob = self.gamma.prob(value)
|
||||
log_prob = self.gamma.log_prob(value)
|
||||
return prob + log_prob
|
||||
|
||||
def test_gamma_prob():
|
||||
"""
|
||||
Test probability functions: passing value through construct.
|
||||
"""
|
||||
net = GammaProb()
|
||||
value = Tensor([0.5, 1.0], dtype=dtype.float32)
|
||||
ans = net(value)
|
||||
assert isinstance(ans, Tensor)
|
||||
|
||||
|
||||
class GammaProb1(nn.Cell):
|
||||
"""
|
||||
Gamma distribution: initialize without concentration1/concentration0.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(GammaProb1, self).__init__()
|
||||
self.gamma = msd.Gamma()
|
||||
|
||||
def construct(self, value, concentration1, concentration0):
|
||||
prob = self.gamma.prob(value, concentration1, concentration0)
|
||||
log_prob = self.gamma.log_prob(value, concentration1, concentration0)
|
||||
return prob + log_prob
|
||||
|
||||
def test_gamma_prob1():
|
||||
"""
|
||||
Test probability functions: passing concentration1/concentration0, value through construct.
|
||||
"""
|
||||
net = GammaProb1()
|
||||
value = Tensor([0.5, 1.0], dtype=dtype.float32)
|
||||
concentration1 = Tensor([2.0, 3.0], dtype=dtype.float32)
|
||||
concentration0 = Tensor([1.0], dtype=dtype.float32)
|
||||
ans = net(value, concentration1, concentration0)
|
||||
assert isinstance(ans, Tensor)
|
||||
|
||||
class GammaKl(nn.Cell):
|
||||
"""
|
||||
Test class: kl_loss of Gamma distribution.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(GammaKl, self).__init__()
|
||||
self.g1 = msd.Gamma(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
|
||||
self.g2 = msd.Gamma(dtype=dtype.float32)
|
||||
|
||||
def construct(self, concentration1_b, concentration0_b, concentration1_a, concentration0_a):
|
||||
kl1 = self.g1.kl_loss('Gamma', concentration1_b, concentration0_b)
|
||||
kl2 = self.g2.kl_loss('Gamma', concentration1_b, concentration0_b, concentration1_a, concentration0_a)
|
||||
return kl1 + kl2
|
||||
|
||||
def test_kl():
|
||||
"""
|
||||
Test kl_loss.
|
||||
"""
|
||||
net = GammaKl()
|
||||
concentration1_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32)
|
||||
concentration0_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32)
|
||||
concentration1_a = Tensor(np.array([2.0]).astype(np.float32), dtype=dtype.float32)
|
||||
concentration0_a = Tensor(np.array([3.0]).astype(np.float32), dtype=dtype.float32)
|
||||
ans = net(concentration1_b, concentration0_b, concentration1_a, concentration0_a)
|
||||
assert isinstance(ans, Tensor)
|
||||
|
||||
class GammaCrossEntropy(nn.Cell):
|
||||
"""
|
||||
Test class: cross_entropy of Gamma distribution.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(GammaCrossEntropy, self).__init__()
|
||||
self.g1 = msd.Gamma(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
|
||||
self.g2 = msd.Gamma(dtype=dtype.float32)
|
||||
|
||||
def construct(self, concentration1_b, concentration0_b, concentration1_a, concentration0_a):
|
||||
h1 = self.g1.cross_entropy('Gamma', concentration1_b, concentration0_b)
|
||||
h2 = self.g2.cross_entropy('Gamma', concentration1_b, concentration0_b, concentration1_a, concentration0_a)
|
||||
return h1 + h2
|
||||
|
||||
def test_cross_entropy():
|
||||
"""
|
||||
Test cross entropy between Gamma distributions.
|
||||
"""
|
||||
net = GammaCrossEntropy()
|
||||
concentration1_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32)
|
||||
concentration0_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32)
|
||||
concentration1_a = Tensor(np.array([2.0]).astype(np.float32), dtype=dtype.float32)
|
||||
concentration0_a = Tensor(np.array([3.0]).astype(np.float32), dtype=dtype.float32)
|
||||
ans = net(concentration1_b, concentration0_b, concentration1_a, concentration0_a)
|
||||
assert isinstance(ans, Tensor)
|
||||
|
||||
class GammaBasics(nn.Cell):
|
||||
"""
|
||||
Test class: basic mean/sd function.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(GammaBasics, self).__init__()
|
||||
self.g = msd.Gamma(np.array([3.0, 4.0]), np.array([4.0, 6.0]), dtype=dtype.float32)
|
||||
|
||||
def construct(self):
|
||||
mean = self.g.mean()
|
||||
sd = self.g.sd()
|
||||
mode = self.g.mode()
|
||||
return mean + sd + mode
|
||||
|
||||
def test_bascis():
|
||||
"""
|
||||
Test mean/sd/mode/entropy functionality of Gamma.
|
||||
"""
|
||||
net = GammaBasics()
|
||||
ans = net()
|
||||
assert isinstance(ans, Tensor)
|
||||
|
||||
class GammaConstruct(nn.Cell):
|
||||
"""
|
||||
Gamma distribution: going through construct.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(GammaConstruct, self).__init__()
|
||||
self.gamma = msd.Gamma([3.0], [4.0])
|
||||
self.gamma1 = msd.Gamma()
|
||||
|
||||
def construct(self, value, concentration1, concentration0):
|
||||
prob = self.gamma('prob', value)
|
||||
prob1 = self.gamma('prob', value, concentration1, concentration0)
|
||||
prob2 = self.gamma1('prob', value, concentration1, concentration0)
|
||||
return prob + prob1 + prob2
|
||||
|
||||
def test_gamma_construct():
|
||||
"""
|
||||
Test probability function going through construct.
|
||||
"""
|
||||
net = GammaConstruct()
|
||||
value = Tensor([0.5, 1.0], dtype=dtype.float32)
|
||||
concentration1 = Tensor([0.0], dtype=dtype.float32)
|
||||
concentration0 = Tensor([1.0], dtype=dtype.float32)
|
||||
ans = net(value, concentration1, concentration0)
|
||||
assert isinstance(ans, Tensor)
|
Loading…
Reference in new issue