fix static check error

pull/10272/head
xutianchun 4 years ago
parent ffe61081d3
commit 3a262a66ad

@ -15,17 +15,17 @@
*/
#include "src/dataset.h"
#include <assert.h>
#include <arpa/inet.h>
#include <map>
#include <iostream>
#include <fstream>
#include <memory>
#include "src/utils.h"
using LabelId = std::map<std::string, int>;
char *ReadFile(const std::string &file, size_t *size) {
assert(size != nullptr);
MS_ASSERT(size != nullptr);
std::string realPath(file);
std::ifstream ifs(realPath);
if (!ifs.good()) {

@ -20,6 +20,7 @@
#include <iostream>
#include <fstream>
#include "include/context.h"
#include "src/utils.h"
unsigned int NetRunner::seed_ = time(NULL);
// Definition of callback function after forwarding operator.
@ -61,10 +62,10 @@ void NetRunner::InitAndFigureInputs() {
context.thread_num_ = 1;
session_ = mindspore::session::TrainSession::CreateSession(ms_file_, &context);
assert(nullptr != session_);
MS_ASSERT(nullptr != session_);
auto inputs = session_->GetInputs();
assert(inputs.size() > 1);
MS_ASSERT(inputs.size() > 1);
data_index_ = 0;
label_index_ = 1;
batch_size_ = inputs[data_index_]->shape()[0];
@ -91,8 +92,8 @@ std::vector<int> NetRunner::FillInputData(const std::vector<DataLabelTuple> &dat
auto inputs = session_->GetInputs();
char *input_data = reinterpret_cast<char *>(inputs.at(data_index_)->MutableData());
auto labels = reinterpret_cast<float *>(inputs.at(label_index_)->MutableData());
assert(total_size > 0);
assert(input_data != nullptr);
MS_ASSERT(total_size > 0);
MS_ASSERT(input_data != nullptr);
std::fill(labels, labels + inputs.at(label_index_)->ElementsNum(), 0.f);
for (int i = 0; i < batch_size_; i++) {
if (serially) {
@ -122,7 +123,7 @@ float NetRunner::CalculateAccuracy(int max_tests) const {
auto labels = FillInputData(test_set, (max_tests == -1));
session_->RunGraph();
auto outputsv = SearchOutputsForSize(batch_size_ * num_of_classes_);
assert(outputsv != nullptr);
MS_ASSERT(outputsv != nullptr);
auto scores = reinterpret_cast<float *>(outputsv->MutableData());
for (int b = 0; b < batch_size_; b++) {
int max_idx = 0;
@ -147,7 +148,7 @@ int NetRunner::InitDB() {
num_of_classes_ = ds_.num_of_classes();
if (ds_.test_data().size() == 0) {
std::cout << "No relevant data was found in " << data_dir_ << std::endl;
assert(ds_.test_data().size() != 0);
MS_ASSERT(ds_.test_data().size() != 0);
}
return ret;
@ -155,7 +156,7 @@ int NetRunner::InitDB() {
float NetRunner::GetLoss() const {
auto outputsv = SearchOutputsForSize(1); // Search for Loss which is a single value tensor
assert(outputsv != nullptr);
MS_ASSERT(outputsv != nullptr);
auto loss = reinterpret_cast<float *>(outputsv->MutableData());
return loss[0];
}

@ -0,0 +1,27 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_EXAMPLES_TRAIN_LENET_SRC_UTILS_H_
#define MINDSPORE_LITE_EXAMPLES_TRAIN_LENET_SRC_UTILS_H_
#ifdef DEBUG
#include <cassert>
#define MS_ASSERT(f) assert(f)
#else
#define MS_ASSERT(f) ((void)0)
#endif
#endif // MINDSPORE_LITE_EXAMPLES_TRAIN_LENET_SRC_UTILS_H_

@ -15,13 +15,13 @@
*/
#include "src/dataset.h"
#include <assert.h>
#include <dirent.h>
#include <arpa/inet.h>
#include <map>
#include <iostream>
#include <fstream>
#include <memory>
#include "src/utils.h"
#pragma pack(push, 1)
@ -52,7 +52,7 @@ float CH_STD[3] = {0.229, 0.224, 0.225};
using LabelId = std::map<std::string, int>;
static char *ReadBitmapFile(const std::string &filename, size_t *size) {
assert(size != nullptr);
MS_ASSERT(size != nullptr);
*size = 0;
bmp_header bitmap_header;
std::ifstream ifs(filename);
@ -71,7 +71,7 @@ static char *ReadBitmapFile(const std::string &filename, size_t *size) {
ifs.seekg(bitmap_header.offset, std::ios::beg);
unsigned char *bmp_image = reinterpret_cast<unsigned char *>(malloc(bitmap_header.image_size_bytes));
if (!bmp_image) {
if (bmp_image == nullptr) {
ifs.close();
return nullptr;
}
@ -80,7 +80,7 @@ static char *ReadBitmapFile(const std::string &filename, size_t *size) {
size_t buffer_size = bitmap_header.width * bitmap_header.height * 3;
float *hwc_bin_image = new (std::nothrow) float[buffer_size];
if (!hwc_bin_image) {
if (hwc_bin_image == nullptr) {
free(bmp_image);
ifs.close();
return nullptr;
@ -114,7 +114,7 @@ static char *ReadBitmapFile(const std::string &filename, size_t *size) {
}
char *ReadFile(const std::string &file, size_t *size) {
assert(size != nullptr);
MS_ASSERT(size != nullptr);
std::string realPath(file);
std::ifstream ifs(realPath);
if (!ifs.good()) {
@ -203,6 +203,7 @@ std::vector<FileTuple> DataSet::ReadDir(const std::string dpath) {
}
}
}
closedir(dp);
}
return vec;
}

@ -20,6 +20,7 @@
#include <iostream>
#include <fstream>
#include "include/context.h"
#include "src/utils.h"
static unsigned int seed = time(NULL);
@ -68,10 +69,10 @@ void NetRunner::InitAndFigureInputs() {
context.thread_num_ = 1;
session_ = mindspore::session::TrainSession::CreateSession(ms_file_, &context);
assert(nullptr != session_);
MS_ASSERT(nullptr != session_);
auto inputs = session_->GetInputs();
assert(inputs.size() > 1);
MS_ASSERT(inputs.size() > 1);
data_index_ = 0;
label_index_ = 1;
batch_size_ = inputs[data_index_]->shape()[0];
@ -99,8 +100,8 @@ std::vector<int> NetRunner::FillInputData(const std::vector<DataLabelTuple> &dat
auto inputs = session_->GetInputs();
char *input_data = reinterpret_cast<char *>(inputs.at(data_index_)->MutableData());
auto labels = reinterpret_cast<float *>(inputs.at(label_index_)->MutableData());
assert(total_size > 0);
assert(input_data != nullptr);
MS_ASSERT(total_size > 0);
MS_ASSERT(input_data != nullptr);
std::fill(labels, labels + inputs.at(label_index_)->ElementsNum(), 0.f);
for (int i = 0; i < batch_size_; i++) {
if (serially >= 0) {
@ -128,7 +129,7 @@ float NetRunner::CalculateAccuracy(const std::vector<DataLabelTuple> &dataset) c
auto labels = FillInputData(dataset, i);
session_->RunGraph();
auto outputsv = SearchOutputsForSize(batch_size_ * num_of_classes_);
assert(outputsv != nullptr);
MS_ASSERT(outputsv != nullptr);
auto scores = reinterpret_cast<float *>(outputsv->MutableData());
for (int b = 0; b < batch_size_; b++) {
int max_idx = 0;
@ -158,7 +159,7 @@ int NetRunner::InitDB() {
if (ds_.test_data().size() == 0) {
std::cout << "No relevant data was found in " << data_dir_ << std::endl;
assert(ds_.test_data().size() != 0);
MS_ASSERT(ds_.test_data().size() != 0);
}
return ret;
@ -166,7 +167,7 @@ int NetRunner::InitDB() {
float NetRunner::GetLoss() const {
auto outputsv = SearchOutputsForSize(1); // Search for Loss which is a single value tensor
assert(outputsv != nullptr);
MS_ASSERT(outputsv != nullptr);
auto loss = reinterpret_cast<float *>(outputsv->MutableData());
return loss[0];
}

@ -0,0 +1,27 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_EXAMPLES_TRANSFER_LEARNING_SRC_UTILS_H_
#define MINDSPORE_LITE_EXAMPLES_TRANSFER_LEARNING_SRC_UTILS_H_
#ifdef DEBUG
#include <cassert>
#define MS_ASSERT(f) assert(f)
#else
#define MS_ASSERT(f) ((void)0)
#endif
#endif // MINDSPORE_LITE_EXAMPLES_TRANSFER_LEARNING_SRC_UTILS_H_
Loading…
Cancel
Save