!1187 Checkpoint and restore parameter's shape
Merge pull request !1187 from yangzhenzhang/ckpt-and-restore-parameter-shapepull/1187/MERGE
commit
3b6de89368
@ -0,0 +1,68 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import mindspore as ms
|
||||
from mindspore import context, Tensor, Parameter
|
||||
from mindspore.nn import Cell, TrainOneStepCell, Momentum
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common.api import _executor
|
||||
|
||||
|
||||
class Net(Cell):
|
||||
def __init__(self, mul_weight, strategy1=None, strategy2=None):
|
||||
super().__init__()
|
||||
self.mul = P.Mul().set_strategy(strategy1)
|
||||
self.neg = P.Neg().set_strategy(strategy2)
|
||||
self.mul_weight = Parameter(mul_weight, "w1")
|
||||
|
||||
def construct(self, x, b):
|
||||
out = self.mul(x, self.mul_weight)
|
||||
out = self.neg(out)
|
||||
return out
|
||||
|
||||
|
||||
class EvalNet(Cell):
|
||||
def __init__(self, network, strategy2=None):
|
||||
super().__init__()
|
||||
self.network = network
|
||||
self.relu = P.ReLU().set_strategy(strategy2)
|
||||
|
||||
def construct(self, x, b):
|
||||
out = self.network(x, b)
|
||||
out = self.relu(out)
|
||||
return out
|
||||
|
||||
|
||||
_x = Tensor(np.ones([8, 8]), dtype=ms.float32)
|
||||
_w1 = Tensor(np.ones([8, 8]), dtype=ms.float32)
|
||||
_b = Tensor(np.ones([8, 8]), dtype=ms.float32)
|
||||
|
||||
|
||||
def test_train_and_eval():
|
||||
context.set_context(save_graphs=True, mode=0)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16)
|
||||
strategy1 = ((4, 4), (4, 4))
|
||||
strategy2 = ((4, 4), )
|
||||
net = Net(_w1, strategy1, strategy2)
|
||||
eval_net = EvalNet(net, strategy2=strategy2)
|
||||
net.set_train()
|
||||
net.set_auto_parallel()
|
||||
_executor.compile(net, _x, _b, phase='train', auto_parallel_mode=True)
|
||||
|
||||
eval_net.set_train(mode=False)
|
||||
eval_net.set_auto_parallel()
|
||||
_executor.compile(eval_net, _x, _b, phase='eval', auto_parallel_mode=True)
|
||||
|
||||
context.reset_auto_parallel_context()
|
Loading…
Reference in new issue