|
|
|
@ -46,6 +46,7 @@ def main():
|
|
|
|
|
parser.add_argument("--pre_trained_epoch_size", type=int, default=0, help="Pretrained epoch size.")
|
|
|
|
|
parser.add_argument("--save_checkpoint_epochs", type=int, default=10, help="Save checkpoint epochs, default is 5.")
|
|
|
|
|
parser.add_argument("--loss_scale", type=int, default=1024, help="Loss scale, default is 1024.")
|
|
|
|
|
parser.add_argument("--filter_weight", type=bool, default=False, help="Filter weight parameters, default is False.")
|
|
|
|
|
args_opt = parser.parse_args()
|
|
|
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id)
|
|
|
|
@ -117,7 +118,8 @@ def main():
|
|
|
|
|
if args_opt.pre_trained_epoch_size <= 0:
|
|
|
|
|
raise KeyError("pre_trained_epoch_size must be greater than 0.")
|
|
|
|
|
param_dict = load_checkpoint(args_opt.pre_trained)
|
|
|
|
|
filter_checkpoint_parameter(param_dict)
|
|
|
|
|
if args_opt.filter_weight:
|
|
|
|
|
filter_checkpoint_parameter(param_dict)
|
|
|
|
|
load_param_into_net(net, param_dict)
|
|
|
|
|
|
|
|
|
|
lr = Tensor(get_lr(global_step=config.global_step,
|
|
|
|
|