|
|
|
|
@ -289,11 +289,11 @@ class Cast(PrimitiveWithInfer):
|
|
|
|
|
Examples:
|
|
|
|
|
>>> input_np = np.random.randn(2, 3, 4, 5).astype(np.float32)
|
|
|
|
|
>>> input_x = Tensor(input_np)
|
|
|
|
|
>>> type_dst = mindspore.float16
|
|
|
|
|
>>> type_dst = mindspore.int32
|
|
|
|
|
>>> cast = ops.Cast()
|
|
|
|
|
>>> output = cast(input_x, type_dst)
|
|
|
|
|
>>> print(output.dtype)
|
|
|
|
|
Float16
|
|
|
|
|
Int32
|
|
|
|
|
>>> print(output.shape)
|
|
|
|
|
(2, 3, 4, 5)
|
|
|
|
|
"""
|
|
|
|
|
@ -1541,10 +1541,10 @@ class Argmax(PrimitiveWithInfer):
|
|
|
|
|
``Ascend`` ``GPU`` ``CPU``
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
>>> input_x = Tensor(np.array([2.0, 3.1, 1.2]), mindspore.float32)
|
|
|
|
|
>>> input_x = Tensor(np.array([[1, 20, 5], [67, 8, 9], [130, 24, 15]]).astype(np.float32))
|
|
|
|
|
>>> output = ops.Argmax(output_type=mindspore.int32)(input_x)
|
|
|
|
|
>>> print(output)
|
|
|
|
|
1
|
|
|
|
|
[1 0 0]
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
@prim_attr_register
|
|
|
|
|
@ -2115,15 +2115,15 @@ class Concat(PrimitiveWithInfer):
|
|
|
|
|
``Ascend`` ``GPU`` ``CPU``
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
>>> data1 = Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))
|
|
|
|
|
>>> data2 = Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))
|
|
|
|
|
>>> data1 = Tensor(np.array([[0, 1], [2, 1]]).astype(np.float32))
|
|
|
|
|
>>> data2 = Tensor(np.array([[0, 1], [2, 1]]).astype(np.float32))
|
|
|
|
|
>>> op = ops.Concat()
|
|
|
|
|
>>> output = op((data1, data2))
|
|
|
|
|
>>> print(output)
|
|
|
|
|
[[0 1]
|
|
|
|
|
[2 1]
|
|
|
|
|
[0 1]
|
|
|
|
|
[2 1]]
|
|
|
|
|
[[0. 1.]
|
|
|
|
|
[2. 1.]
|
|
|
|
|
[0. 1.]
|
|
|
|
|
[2. 1.]]
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
@prim_attr_register
|
|
|
|
|
|