|
|
|
@ -358,7 +358,7 @@ class ExportToQuantInferNetwork:
|
|
|
|
|
param_dict["std_dev"] = self.std_dev
|
|
|
|
|
param_dict["symmetric"] = fake_quant_a_out.symmetric
|
|
|
|
|
|
|
|
|
|
scale_w, zp_w, _, _ = \
|
|
|
|
|
scale_w, zp_w, param_dict["filter_maxq"], param_dict["filter_minq"] = \
|
|
|
|
|
quant_utils.scale_zp_max_min_from_fake_quant_cell(cell_core.fake_quant_weight, np_type)
|
|
|
|
|
scale_a_out, _, param_dict["output_maxq"], param_dict["output_minq"] = \
|
|
|
|
|
quant_utils.scale_zp_max_min_from_fake_quant_cell(fake_quant_a_out, np_type)
|
|
|
|
@ -401,9 +401,6 @@ class ExportToQuantInferNetwork:
|
|
|
|
|
weight, bias = quant_utils.fold_batchnorm(weight, cell_core)
|
|
|
|
|
elif isinstance(cell_core, quant.Conv2dBnWithoutFoldQuant):
|
|
|
|
|
weight, bias = quant_utils.without_fold_batchnorm(weight, cell_core)
|
|
|
|
|
if self.is_mindir:
|
|
|
|
|
param_dict["filter_maxq"], param_dict["filter_minq"] = cell_core.fake_quant_weight.maxq, \
|
|
|
|
|
cell_core.fake_quant_weight.minq
|
|
|
|
|
weight_b = weight
|
|
|
|
|
bias_b = bias
|
|
|
|
|
# apply the quant
|
|
|
|
|