!1695 Fixing some tiny faults about Pylint in my code(ops)

Merge pull request !1695 from liuwenhao/master
pull/1695/MERGE
mindspore-ci-bot 5 years ago committed by Gitee
commit 3ec8f9bb40

@ -14,18 +14,17 @@
# ============================================================================
"""multitype_ops directory test case"""
import numpy as np
from functools import partial, reduce
import pytest
import mindspore.nn as nn
from mindspore import Tensor
from mindspore import dtype as mstype
from mindspore.ops import functional as F, composite as C
from mindspore.ops import functional as F
import mindspore.context as context
import pytest
class TensorIntAutoCast(nn.Cell):
def __init__(self, ):
def __init__(self,):
super(TensorIntAutoCast, self).__init__()
self.i = 2
@ -35,7 +34,7 @@ class TensorIntAutoCast(nn.Cell):
class TensorFPAutoCast(nn.Cell):
def __init__(self, ):
def __init__(self,):
super(TensorFPAutoCast, self).__init__()
self.f = 1.2
@ -45,7 +44,7 @@ class TensorFPAutoCast(nn.Cell):
class TensorBoolAutoCast(nn.Cell):
def __init__(self, ):
def __init__(self,):
super(TensorBoolAutoCast, self).__init__()
self.f = True
@ -55,7 +54,7 @@ class TensorBoolAutoCast(nn.Cell):
class TensorAutoCast(nn.Cell):
def __init__(self, ):
def __init__(self,):
super(TensorAutoCast, self).__init__()
def construct(self, t1, t2):
@ -65,7 +64,7 @@ class TensorAutoCast(nn.Cell):
def test_tensor_auto_cast():
context.set_context(mode=context.GRAPH_MODE)
t0 = Tensor([True, False], mstype.bool_)
Tensor([True, False], mstype.bool_)
t_uint8 = Tensor(np.ones([2, 1, 2, 2]), mstype.uint8)
t_int8 = Tensor(np.ones([2, 1, 2, 2]), mstype.int8)
t_int16 = Tensor(np.ones([2, 1, 2, 2]), mstype.int16)

@ -13,7 +13,6 @@
# limitations under the License.
# ============================================================================
""" test nn ops """
import functools
import numpy as np
import mindspore.nn as nn
import mindspore.common.dtype as mstype

@ -14,10 +14,10 @@
# ============================================================================
import pytest
import mindspore.nn as nn
from mindspore.common.api import ms_function
import numpy as np
import mindspore.nn as nn
import mindspore.context as context
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.ops import composite as C
from mindspore.ops import operations as P
@ -196,10 +196,6 @@ def test_multi_layer_bilstm():
bidirectional = True
dropout = 0.0
num_directions = 1
if bidirectional:
num_directions = 2
net = MultiLayerBiLstmNet(seq_len, batch_size, input_size, hidden_size, num_layers, has_bias, bidirectional,
dropout)
y, h, c, _, _ = net()
@ -305,9 +301,6 @@ def test_grad():
has_bias = True
bidirectional = False
dropout = 0.0
num_directions = 1
if bidirectional:
num_directions = 2
net = Grad(Net(seq_len, batch_size, input_size, hidden_size, num_layers, has_bias, bidirectional, dropout))
dy = np.array([[[-3.5471e-01, 7.0540e-01],
[2.7161e-01, 1.0865e+00]],

@ -94,7 +94,7 @@ def test_random_crop_and_resize_op_py(plot=False):
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
crop_and_resize = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
original = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
original = cv2.resize(original, (512,256))
original = cv2.resize(original, (512, 256))
mse = diff_mse(crop_and_resize, original)
logger.info("random_crop_and_resize_op_{}, mse: {}".format(num_iter + 1, mse))
num_iter += 1

@ -78,4 +78,4 @@ def test_layer_switch():
net = MySwitchNet()
x = Tensor(np.ones((3, 3, 24, 24)), mindspore.float32)
index = Tensor(0, dtype=mindspore.int32)
y = net(x, index)
net(x, index)

@ -28,7 +28,7 @@ from ....mindspore_test_framework.pipeline.forward.compile_forward \
class AssignAddNet(nn.Cell):
def __init__(self, ):
def __init__(self,):
super(AssignAddNet, self).__init__()
self.op = P.AssignAdd()
self.inputdata = Parameter(Tensor(np.zeros([1]).astype(np.bool_), mstype.bool_), name="assign_add1")
@ -39,7 +39,7 @@ class AssignAddNet(nn.Cell):
class AssignSubNet(nn.Cell):
def __init__(self, ):
def __init__(self,):
super(AssignSubNet, self).__init__()
self.op = P.AssignSub()
self.inputdata = Parameter(Tensor(np.zeros([1]).astype(np.bool_), mstype.bool_), name="assign_sub1")

Loading…
Cancel
Save