!3147 add RNNTLoss and RandomCategorical ops for aicpu

Merge pull request !3147 from yanzhenxiang2020/add_rnnt_cate_open.new
pull/3147/MERGE
mindspore-ci-bot 5 years ago committed by Gitee
commit 43567f9b9f

@ -567,6 +567,16 @@ def get_bprop_l2_loss(self):
return bprop
@bprop_getters.register(P.RNNTLoss)
def get_bprop_rnnt_loss(self):
"""Grad definition for `RNNTLoss` operation."""
def bprop(acts, labels, act_lens, label_lens, out, dout):
grad = out[1]
return grad, zeros_like(labels), zeros_like(act_lens), zeros_like(label_lens)
return bprop
@bprop_getters.register(P.PReLU)
def get_bprop_prelu(self):
"""Grad definition for `PReLU` operation."""

@ -30,3 +30,5 @@ from .ctcloss import _ctcloss_aicpu
from .reverse_sequence import _reverse_sequence_aicpu
from .crop_and_resize import _crop_and_resize_aicpu
from .end_of_sequence import _end_of_sequence_aicpu
from .rnnt_loss import _rnnt_loss_aicpu
from .random_categorical import _random_categorical_aicpu

@ -0,0 +1,48 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""RandomCategorical op"""
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
random_categorical_op_info = AiCPURegOp("RandomCategorical") \
.fusion_type("OPAQUE") \
.input(0, "logits", "required") \
.input(1, "num_sample", "required") \
.input(2, "seed", "required") \
.output(0, "output", "required") \
.dtype_format(DataType.F16_Default, DataType.I32_Default, DataType.I32_Default, DataType.I16_Default) \
.dtype_format(DataType.F32_Default, DataType.I32_Default, DataType.I32_Default, DataType.I16_Default) \
.dtype_format(DataType.F64_Default, DataType.I32_Default, DataType.I32_Default, DataType.I16_Default) \
.dtype_format(DataType.F16_Default, DataType.I32_Default, DataType.I32_Default, DataType.I32_Default) \
.dtype_format(DataType.F32_Default, DataType.I32_Default, DataType.I32_Default, DataType.I32_Default) \
.dtype_format(DataType.F64_Default, DataType.I32_Default, DataType.I32_Default, DataType.I32_Default) \
.dtype_format(DataType.F16_Default, DataType.I32_Default, DataType.I32_Default, DataType.I64_Default) \
.dtype_format(DataType.F32_Default, DataType.I32_Default, DataType.I32_Default, DataType.I64_Default) \
.dtype_format(DataType.F64_Default, DataType.I32_Default, DataType.I32_Default, DataType.I64_Default) \
.dtype_format(DataType.F16_Default, DataType.I64_Default, DataType.I64_Default, DataType.I16_Default) \
.dtype_format(DataType.F32_Default, DataType.I64_Default, DataType.I64_Default, DataType.I16_Default) \
.dtype_format(DataType.F64_Default, DataType.I64_Default, DataType.I64_Default, DataType.I16_Default) \
.dtype_format(DataType.F16_Default, DataType.I64_Default, DataType.I64_Default, DataType.I32_Default) \
.dtype_format(DataType.F32_Default, DataType.I64_Default, DataType.I64_Default, DataType.I32_Default) \
.dtype_format(DataType.F64_Default, DataType.I64_Default, DataType.I64_Default, DataType.I32_Default) \
.dtype_format(DataType.F16_Default, DataType.I64_Default, DataType.I64_Default, DataType.I64_Default) \
.dtype_format(DataType.F32_Default, DataType.I64_Default, DataType.I64_Default, DataType.I64_Default) \
.dtype_format(DataType.F64_Default, DataType.I64_Default, DataType.I64_Default, DataType.I64_Default) \
.get_op_info()
@op_info_register(random_categorical_op_info)
def _random_categorical_aicpu():
"""RandomCategorical AiCPU register"""
return

@ -0,0 +1,37 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""RNNTLoss op"""
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
rnnt_loss_op_info = AiCPURegOp("RNNTLoss") \
.fusion_type("OPAQUE") \
.input(0, "acts", "required") \
.input(1, "labels", "required") \
.input(2, "input_lengths", "required") \
.input(3, "label_lengths", "required") \
.output(0, "costs", "required") \
.output(1, "grads", "required") \
.attr("blank_label", "int") \
.dtype_format(DataType.F32_NCHW, DataType.I32_NCHW, DataType.I32_NCHW, DataType.I32_NCHW, DataType.F32_NCHW,
DataType.F32_NCHW) \
.dtype_format(DataType.F32_Default, DataType.I32_Default, DataType.I32_Default, DataType.I32_Default,
DataType.F32_Default, DataType.F32_Default) \
.get_op_info()
@op_info_register(rnnt_loss_op_info)
def _rnnt_loss_aicpu():
"""RNNTLoss AiCPU register"""
return

@ -55,7 +55,7 @@ from .math_ops import (Abs, ACos, Asin, Asinh, AddN, AccumulateNV2, AssignAdd, A
Sin, Sqrt, Rsqrt, BesselI0e, BesselI1e, TruncateDiv, TruncateMod,
Square, Sub, TensorAdd, Sign, Round, SquareSumAll, Atan, Atanh, Cosh, Sinh, Eps, Tan)
from .random_ops import (RandomChoiceWithMask, Normal)
from .random_ops import (RandomChoiceWithMask, Normal, RandomCategorical)
from .nn_ops import (LSTM, SGD, Adam, SparseApplyAdam, SparseApplyLazyAdam, ApplyMomentum, BatchNorm,
BiasAdd, Conv2D,
DepthwiseConv2dNative,
@ -70,6 +70,7 @@ from .nn_ops import (LSTM, SGD, Adam, SparseApplyAdam, SparseApplyLazyAdam, Appl
ResizeBilinear, Sigmoid,
SigmoidCrossEntropyWithLogits,
SmoothL1Loss, Softmax, Softsign, Softplus, LRN,
RNNTLoss,
SoftmaxCrossEntropyWithLogits, ROIAlign,
SparseSoftmaxCrossEntropyWithLogits, Tanh,
TopK, BinaryCrossEntropy, SparseApplyAdagrad, LARSUpdate, ApplyFtrl, SparseApplyFtrl,
@ -171,6 +172,7 @@ __all__ = [
'Tanh',
'RandomChoiceWithMask',
'Normal',
'RandomCategorical',
'ResizeBilinear',
'ScalarSummary',
'ImageSummary',
@ -202,6 +204,7 @@ __all__ = [
'SmoothL1Loss',
'L2Loss',
'CTCLoss',
'RNNTLoss',
'ReduceAll',
'ScalarToArray',
'ScalarToTensor',

@ -1736,6 +1736,62 @@ class DataFormatDimMap(PrimitiveWithInfer):
return x_type
class RNNTLoss(PrimitiveWithInfer):
"""
Computes the RNNTLoss and its gradient with respect to the softmax outputs.
Args:
blank_label (int): blank label. Default: 0.
Inputs:
- **acts** (Tensor[float32]) - Tensor of shape :math:`(B, T, U, V)`.
- **labels** (Tensor[int32]) - Tensor of shape :math:`(B, U-1)`.
- **input_lengths** (Tensor[int32]) - Tensor of shape :math:`(B,)`.
- **label_lebgths** (Tensor[int32]) - Tensor of shape :math:`(B,)`.
Outputs:
- **costs** (Tensor[int32]) - Tensor of shape :math:`(B,)`.
- **grads** (Tensor[int32]) - Has the same shape as `acts`.
Examples:
>>> B, T, U, V = 1, 2, 3, 5
>>> acts = np.random.random((B, T, U, V)).astype(np.float32)
>>> labels = np.array([[1, 2]]).astype(np.int32)
>>> input_length = np.array([T] * B).astype(np.int32)
>>> label_length = np.array([len(l) for l in labels]).astype(np.int32)
>>> rnnt_loss = P.RNNTLoss(blank_label=blank)
>>> costs, grads = rnnt_loss(Tensor(acts), Tensor(labels), Tensor(input_length), Tensor(label_length))
"""
@prim_attr_register
def __init__(self, blank_label=0):
validator.check_value_type('blank_label', blank_label, [int], self.name)
self.init_prim_io_names(inputs=['acts', 'labels', 'input_length', 'label_length'],
outputs=['costs', 'grads'])
def infer_shape(self, acts_shape, labels_shape, input_length_shape, label_length_shape):
validator.check_integer('acts_rank', len(acts_shape), 4, Rel.EQ, self.name)
validator.check_integer('labels_rank', len(labels_shape), 2, Rel.EQ, self.name)
validator.check_integer('input_length_rank', len(input_length_shape), 1, Rel.EQ, self.name)
validator.check_integer('label_length_rank', len(label_length_shape), 1, Rel.EQ, self.name)
validator.check('labels shape[0]', labels_shape[0], 'acts shape[0]', acts_shape[0], Rel.EQ, self.name)
validator.check('labels shape[1]', labels_shape[1], 'acts shape[2]-1', acts_shape[2]-1, Rel.EQ, self.name)
validator.check('input_length size', input_length_shape[0], 'acts shape[0]', acts_shape[0], Rel.EQ, self.name)
validator.check('label_length size', label_length_shape[0], 'acts shape[0]', acts_shape[0], Rel.EQ, self.name)
costs_shape = (acts_shape[0],)
return (costs_shape, acts_shape)
def infer_dtype(self, acts_type, labels_type, input_length_type, label_length_type):
validator.check_subclass("acts_type", acts_type, mstype.tensor, self.name)
validator.check_subclass("labels_type", labels_type, mstype.tensor, self.name)
validator.check_subclass("input_length_type", input_length_type, mstype.tensor, self.name)
validator.check_subclass("label_length_type", label_length_type, mstype.tensor, self.name)
validator.check_tensor_type_same({"acts_type": acts_type}, [mstype.float32], self.name)
validator.check_tensor_type_same({"labels_type": labels_type}, [mstype.int32], self.name)
validator.check_tensor_type_same({"input_length_type": input_length_type}, [mstype.int32], self.name)
validator.check_tensor_type_same({"label_length_type": label_length_type}, [mstype.int32], self.name)
return (acts_type, acts_type)
class SGD(PrimitiveWithInfer):
"""
Computes stochastic gradient descent (optionally with momentum).

@ -108,3 +108,61 @@ class Normal(PrimitiveWithInfer):
"dtype": mstype.float32,
"value": None}
return out
class RandomCategorical(PrimitiveWithInfer):
"""
Generates random samples from a given categorical distribution tensor.
Args:
dtype (mindspore.dtype): The type of output. Its value should be one of [mindspore.int16,
mindspore.int32, mindspore.int64]. Default: mindspore.int64.
Inputs:
- **logits** (Tensor) - The input tensor. 2-D Tensor with shape [batch_size, num_classes].
- **num_sample** (int) - Number of sample to be drawn. Only constant values is allowed.
- **seed** (int) - Random seed. Default: 0. Only constant values is allowed.
Outputs:
- **output** (Tensor) - The output Tensor with shape [batch_size, num_samples].
Examples:
>>> class Net(nn.Cell):
>>> def __init__(self, num_sample):
>>> super(Net, self).__init__()
>>> self.random_categorical = P.RandomCategorical(mindspore.int64)
>>> self.num_sample = num_sample
>>> def construct(self, logits, seed=0):
>>> return self.random_categorical(logits, self.num_sample, seed)
>>>
>>> x = np.random.random((10, 5)).astype(np.float32)
>>> net = Net(8)
>>> output = net(Tensor(x))
"""
@prim_attr_register
def __init__(self, dtype=mstype.int64):
"""Init RandomCategorical"""
self.dtype = dtype
valid_values = (mstype.int32, mstype.int16, mstype.int64)
validator.check_type_name("dtype", dtype, valid_values, self.name)
self.init_prim_io_names(inputs=['logits', 'num_samples', 'seed'],
outputs=['output'])
def __infer__(self, logits, num_samples, seed):
logits_dtype = logits['dtype']
valid_types = (mstype.float32, mstype.float16, mstype.float64)
validator.check_tensor_type_same({'logits': logits_dtype}, valid_types, self.name)
num_samples_v = num_samples['value']
seed_v = seed['value']
validator.check_value_type('num_samples', num_samples_v, (int,), self.name)
validator.check_value_type('seed', seed_v, (int,), self.name)
validator.check_integer("num_samples", num_samples_v, 0, Rel.GT, self.name)
x_shape = list(logits['shape'])
if len(x_shape) != 2:
raise ValueError("RandomCategorical shape should be 2-dimension.")
ndim = len(x_shape) - 1
x_shape[ndim] = num_samples_v
return {'shape': (x_shape),
'dtype': (self.dtype),
'value': None}

@ -0,0 +1,38 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore
import mindspore.nn as nn
import mindspore.context as context
from mindspore import Tensor
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class Net(nn.Cell):
def __init__(self, num_sample):
super(Net, self).__init__()
self.random_categorical = P.RandomCategorical(mindspore.int64)
self.num_sample = num_sample
def construct(self, logits, seed=0):
return self.random_categorical(logits, self.num_sample, seed)
def test_net():
x = np.random.random((10, 5)).astype(np.float32)
net = Net(8)
output = net(Tensor(x))
print(x)
print(output.asnumpy())
#print(output.dtype())

@ -0,0 +1,41 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore.nn as nn
import mindspore.context as context
from mindspore import Tensor
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.rnnt_loss = P.RNNTLoss(blank_label=0)
def construct(self, acts, labels, act_lens, label_lens):
return self.rnnt_loss(acts, labels, act_lens, label_lens)
def test_net():
B, T, U, V = 1, 2, 3, 5
acts = np.random.random((B, T, U, V)).astype(np.float32)
labels = np.array([[np.random.randint(1, V-1) for _ in range(U-1)]]).astype(np.int32)
input_length = np.array([T] * B).astype(np.int32)
label_length = np.array([len(l) for l in labels]).astype(np.int32)
rnnt_loss = Net()
costs, grads = rnnt_loss(Tensor(acts), Tensor(labels), Tensor(input_length), Tensor(label_length))
print(Tensor(acts), Tensor(labels), Tensor(input_length), Tensor(label_length))
print(costs.asnumpy())
print(grads.asnumpy())
Loading…
Cancel
Save