|
|
|
@ -410,6 +410,7 @@ Status DEPipeline::SaveDataset(const std::vector<std::string> &file_names, const
|
|
|
|
|
std::vector<std::string> index_fields;
|
|
|
|
|
s = FetchMetaFromTensorRow(column_name_id_map, row, &mr_json, &index_fields);
|
|
|
|
|
RETURN_IF_NOT_OK(s);
|
|
|
|
|
MS_LOG(DEBUG) << "Schema of saved mindrecord: " << mr_json.dump();
|
|
|
|
|
if (mindrecord::SUCCESS !=
|
|
|
|
|
mindrecord::ShardHeader::initialize(&mr_header, mr_json, index_fields, blob_fields, mr_schema_id)) {
|
|
|
|
|
RETURN_STATUS_UNEXPECTED("Error: failed to initialize ShardHeader.");
|
|
|
|
@ -569,6 +570,7 @@ Status DEPipeline::FetchMetaFromTensorRow(const std::unordered_map<std::string,
|
|
|
|
|
if (column_name_id_map.empty()) {
|
|
|
|
|
RETURN_STATUS_UNEXPECTED("Error: column not found.");
|
|
|
|
|
}
|
|
|
|
|
json dataset_schema;
|
|
|
|
|
for (auto &col : column_name_id_map) {
|
|
|
|
|
auto idx = col.second;
|
|
|
|
|
auto column_name = col.first;
|
|
|
|
@ -580,6 +582,7 @@ Status DEPipeline::FetchMetaFromTensorRow(const std::unordered_map<std::string,
|
|
|
|
|
auto shapes = column_shape.AsVector();
|
|
|
|
|
std::vector<int> mr_shape(shapes.begin(), shapes.end());
|
|
|
|
|
std::string el = column_type.ToString();
|
|
|
|
|
dataset_schema[column_name] = el;
|
|
|
|
|
if (mindrecord::kTypesMap.find(el) == mindrecord::kTypesMap.end()) {
|
|
|
|
|
std::string err_msg("Error: can not support data type: " + el);
|
|
|
|
|
RETURN_STATUS_UNEXPECTED(err_msg);
|
|
|
|
@ -605,6 +608,7 @@ Status DEPipeline::FetchMetaFromTensorRow(const std::unordered_map<std::string,
|
|
|
|
|
if (mr_type == "bytes" || !mr_shape.empty()) continue;
|
|
|
|
|
index_fields->emplace_back(column_name); // candidate of index fields
|
|
|
|
|
}
|
|
|
|
|
MS_LOG(DEBUG) << "Schema of dataset: " << dataset_schema.dump();
|
|
|
|
|
return Status::OK();
|
|
|
|
|
}
|
|
|
|
|
Status DEPipeline::BuildMindrecordSamplerChain(const py::handle &handle,
|
|
|
|
|