|
|
|
@ -45,7 +45,7 @@ class ModifiedReLU(Gradient):
|
|
|
|
|
Tensor, a 4D tensor of shape :math:`(N, 1, H, W)`.
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
>>> inputs = ms.Tensor(np.random.rand([1, 3, 224, 224]), ms.float32)
|
|
|
|
|
>>> inputs = ms.Tensor(np.random.rand(1, 3, 224, 224), ms.float32)
|
|
|
|
|
>>> label = 5
|
|
|
|
|
>>> # explainer is a "Deconvolution" or "GuidedBackprop" object, parse data and the target label to be
|
|
|
|
|
>>> # explained and get the attribution
|
|
|
|
@ -104,7 +104,7 @@ class Deconvolution(ModifiedReLU):
|
|
|
|
|
>>> # init Gradient with a trained network.
|
|
|
|
|
>>> deconvolution = Deconvolution(net)
|
|
|
|
|
>>> # parse data and the target label to be explained and get the saliency map
|
|
|
|
|
>>> inputs = ms.Tensor(np.random.rand([1, 3, 224, 224]), ms.float32)
|
|
|
|
|
>>> inputs = ms.Tensor(np.random.rand(1, 3, 224, 224), ms.float32)
|
|
|
|
|
>>> label = 5
|
|
|
|
|
>>> saliency = deconvolution(inputs, label)
|
|
|
|
|
"""
|
|
|
|
|