|
|
|
@ -1,4 +1,4 @@
|
|
|
|
|
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
|
|
|
# Copyright 2019-2021 Huawei Technologies Co., Ltd
|
|
|
|
|
#
|
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
@ -13,67 +13,93 @@
|
|
|
|
|
# limitations under the License.
|
|
|
|
|
# ============================================================================
|
|
|
|
|
import numpy as np
|
|
|
|
|
import pytest
|
|
|
|
|
|
|
|
|
|
import mindspore.context as context
|
|
|
|
|
import mindspore.nn as nn
|
|
|
|
|
from mindspore import Tensor
|
|
|
|
|
from mindspore.ops import operations as P
|
|
|
|
|
|
|
|
|
|
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Net(nn.Cell):
|
|
|
|
|
class SqueezeNet(nn.Cell):
|
|
|
|
|
def __init__(self):
|
|
|
|
|
super(Net, self).__init__()
|
|
|
|
|
super(SqueezeNet, self).__init__()
|
|
|
|
|
self.squeeze = P.Squeeze()
|
|
|
|
|
|
|
|
|
|
def construct(self, tensor):
|
|
|
|
|
return self.squeeze(tensor)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_net_bool():
|
|
|
|
|
x = np.random.randn(1, 16, 1, 1).astype(np.bool)
|
|
|
|
|
net = Net()
|
|
|
|
|
output = net(Tensor(x))
|
|
|
|
|
print(output.asnumpy())
|
|
|
|
|
assert np.all(output.asnumpy() == x.squeeze())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_net_uint8():
|
|
|
|
|
x = np.random.randn(1, 16, 1, 1).astype(np.uint8)
|
|
|
|
|
net = Net()
|
|
|
|
|
output = net(Tensor(x))
|
|
|
|
|
print(output.asnumpy())
|
|
|
|
|
assert np.all(output.asnumpy() == x.squeeze())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_net_int16():
|
|
|
|
|
x = np.random.randn(1, 16, 1, 1).astype(np.int16)
|
|
|
|
|
net = Net()
|
|
|
|
|
output = net(Tensor(x))
|
|
|
|
|
print(output.asnumpy())
|
|
|
|
|
assert np.all(output.asnumpy() == x.squeeze())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_net_int32():
|
|
|
|
|
x = np.random.randn(1, 16, 1, 1).astype(np.int32)
|
|
|
|
|
net = Net()
|
|
|
|
|
output = net(Tensor(x))
|
|
|
|
|
print(output.asnumpy())
|
|
|
|
|
assert np.all(output.asnumpy() == x.squeeze())
|
|
|
|
|
|
|
|
|
|
def squeeze(nptype):
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
|
|
|
|
|
|
|
|
def test_net_float16():
|
|
|
|
|
x = np.random.randn(1, 16, 1, 1).astype(np.float16)
|
|
|
|
|
net = Net()
|
|
|
|
|
np.random.seed(0)
|
|
|
|
|
x = np.random.randn(1, 16, 1, 1).astype(nptype)
|
|
|
|
|
net = SqueezeNet()
|
|
|
|
|
output = net(Tensor(x))
|
|
|
|
|
print(output.asnumpy())
|
|
|
|
|
assert np.all(output.asnumpy() == x.squeeze())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_net_float32():
|
|
|
|
|
x = np.random.randn(1, 16, 1, 1).astype(np.float32)
|
|
|
|
|
net = Net()
|
|
|
|
|
output = net(Tensor(x))
|
|
|
|
|
print(output.asnumpy())
|
|
|
|
|
assert np.all(output.asnumpy() == x.squeeze())
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
|
def test_squeeze_bool():
|
|
|
|
|
squeeze(np.bool)
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
|
def test_squeeze_uint8():
|
|
|
|
|
squeeze(np.uint8)
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
|
def test_squeeze_uint16():
|
|
|
|
|
squeeze(np.uint16)
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
|
def test_squeeze_uint32():
|
|
|
|
|
squeeze(np.uint32)
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
|
def test_squeeze_int8():
|
|
|
|
|
squeeze(np.int8)
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
|
def test_squeeze_int16():
|
|
|
|
|
squeeze(np.int16)
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
|
def test_squeeze_int32():
|
|
|
|
|
squeeze(np.int32)
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
|
def test_squeeze_int64():
|
|
|
|
|
squeeze(np.int64)
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
|
def test_squeeze_float16():
|
|
|
|
|
squeeze(np.float16)
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
|
def test_squeeze_float32():
|
|
|
|
|
squeeze(np.float32)
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
|
def test_squeeze_float64():
|
|
|
|
|
squeeze(np.float64)
|
|
|
|
|