!8054 Add gpu support for ScatterUpdate
Merge pull request !8054 from 34bunny/GPU-ScatterUpdatepull/8054/MERGE
commit
497f2f0cff
@ -0,0 +1,36 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/gpu/arrays/scatter_update_gpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
MS_REG_GPU_KERNEL_ONE(ScatterUpdate,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeFloat32),
|
||||
ScatterUpdateKernel, float)
|
||||
MS_REG_GPU_KERNEL_ONE(ScatterUpdate,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddOutputAttr(kNumberTypeFloat16),
|
||||
ScatterUpdateKernel, half)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
@ -0,0 +1,95 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_ARRAYS_SCATTER_UPDATE_GPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_ARRAYS_SCATTER_UPDATE_GPU_KERNEL_H_
|
||||
|
||||
#include <vector>
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
|
||||
#include "backend/kernel_compiler/gpu/cuda_impl/scatter_update_impl.cuh"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename T>
|
||||
class ScatterUpdateKernel : public GpuKernel {
|
||||
public:
|
||||
ScatterUpdateKernel() : input_size_(0), inner_size_(0), indices_size_(0), updates_size_(0) {}
|
||||
~ScatterUpdateKernel() override = default;
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
|
||||
T *input = GetDeviceAddress<T>(inputs, 0);
|
||||
int *indices = GetDeviceAddress<int>(inputs, 1);
|
||||
T *updates = GetDeviceAddress<T>(inputs, 2);
|
||||
T *output = GetDeviceAddress<T>(outputs, 0);
|
||||
CalScatterUpdate(input_size_, inner_size_, indices_size_, input, indices, updates, output,
|
||||
reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
if (input_num != 3) {
|
||||
MS_LOG(ERROR) << "Input number is " << input_num << ", but ScatterUpdate needs 3 inputs.";
|
||||
return false;
|
||||
}
|
||||
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
|
||||
if (output_num != 1) {
|
||||
MS_LOG(ERROR) << "Output number is " << output_num << ", but ScatterUpdate has 1 output.";
|
||||
return false;
|
||||
}
|
||||
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
input_size_ = 1;
|
||||
inner_size_ = 1;
|
||||
for (size_t i = 1; i < input_shape.size(); i++) {
|
||||
inner_size_ *= input_shape[i];
|
||||
}
|
||||
input_size_ = input_shape[0] * inner_size_;
|
||||
auto indices_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
|
||||
indices_size_ = 1;
|
||||
for (size_t i = 0; i < indices_shape.size(); i++) {
|
||||
indices_size_ *= indices_shape[i];
|
||||
}
|
||||
updates_size_ = indices_size_ * inner_size_;
|
||||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitSizeLists() override {
|
||||
input_size_list_.push_back(input_size_ * sizeof(T));
|
||||
input_size_list_.push_back(indices_size_ * sizeof(int));
|
||||
input_size_list_.push_back(updates_size_ * sizeof(T));
|
||||
output_size_list_.push_back(input_size_ * sizeof(T));
|
||||
}
|
||||
|
||||
private:
|
||||
int input_size_;
|
||||
int inner_size_;
|
||||
int indices_size_;
|
||||
int updates_size_;
|
||||
std::vector<size_t> input_size_list_;
|
||||
std::vector<size_t> output_size_list_;
|
||||
std::vector<size_t> workspace_size_list_;
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_ARRAYS_SCATTER_UPDATE_GPU_KERNEL_H_
|
@ -0,0 +1,45 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/gpu/cuda_impl/scatter_update_impl.cuh"
|
||||
|
||||
template <typename T>
|
||||
__global__ void ScatterUpdate(const int input_size, const int inner_size, const int indices_size, const T *input,
|
||||
const int *indices, const T *updates, T *output) {
|
||||
for (int pos = blockIdx.x * blockDim.x + threadIdx.x; pos < input_size; pos += blockDim.x * gridDim.x) {
|
||||
output[pos] = input[pos];
|
||||
const int index = pos / inner_size;
|
||||
const int offset = pos % inner_size;
|
||||
for (int i = 0; i < indices_size; i++) {
|
||||
const int update_pos = i * inner_size + offset;
|
||||
output[pos] = (indices[i] == index ? updates[update_pos] : output[pos]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void CalScatterUpdate(const int &input_size, const int &inner_size, const int &indices_size, const T *input,
|
||||
const int *indices, const T *updates, T *output, cudaStream_t cuda_stream) {
|
||||
ScatterUpdate<<<GET_BLOCKS(input_size), GET_THREADS, 0, cuda_stream>>>(input_size, inner_size, indices_size, input,
|
||||
indices, updates, output);
|
||||
}
|
||||
|
||||
template void CalScatterUpdate<float>(const int &input_size, const int &inner_size, const int &indices_size,
|
||||
const float *input, const int *indices, const float *updates, float *output,
|
||||
cudaStream_t cuda_stream);
|
||||
template void CalScatterUpdate<half>(const int &input_size, const int &inner_size, const int &indices_size,
|
||||
const half *input, const int *indices, const half *updates, half *output,
|
||||
cudaStream_t cuda_stream);
|
@ -0,0 +1,26 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_SCATTER_UPDATE_IMPL_CUH_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_SCATTER_UPDATE_IMPL_CUH_
|
||||
|
||||
#include "runtime/device/gpu/cuda_common.h"
|
||||
|
||||
template <typename T>
|
||||
void CalScatterUpdate(const int &input_size, const int &inner_size, const int &indices_size, const T *input,
|
||||
const int *indices, const T *updates, T *output, cudaStream_t cuda_stream);
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_SCATTER_UPDATE_IMPL_CUH_
|
@ -0,0 +1,106 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor, Parameter
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
# all cases tested against dchip
|
||||
|
||||
class TestScatterUpdateNet(nn.Cell):
|
||||
def __init__(self, inputx, indices, updates):
|
||||
super(TestScatterUpdateNet, self).__init__()
|
||||
self.scatter_update = P.ScatterUpdate()
|
||||
self.inputx = Parameter(inputx, name="inputx")
|
||||
self.indices = Parameter(indices, name="indices")
|
||||
self.updates = Parameter(updates, name="updates")
|
||||
|
||||
def construct(self):
|
||||
out = self.scatter_update(self.inputx, self.indices, self.updates)
|
||||
return out
|
||||
|
||||
def scatter_update_net(inputx, indices, updates):
|
||||
net = TestScatterUpdateNet(inputx, indices, updates)
|
||||
return net()
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_scatter_update_small_float32():
|
||||
inputx = Tensor(np.zeros((2, 3)).astype(np.float32))
|
||||
indices = Tensor(np.array([0, 1]).astype(np.int32))
|
||||
updates = Tensor(np.arange(6).reshape((2, 3)).astype(np.float32))
|
||||
output = scatter_update_net(inputx, indices, updates)
|
||||
expected = np.array([[0., 1., 2.],
|
||||
[3., 4., 5.]])
|
||||
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_scatter_update_input_less_than_1_float32():
|
||||
inputx = Tensor(np.array([[0.214141, 0.415151, 0.51516],
|
||||
[0.876542, 0.451611, 0.55112],
|
||||
[0.111244, 0.633333, 0.34444]]).astype(np.float32))
|
||||
indices = Tensor(np.array([1, 0, 2]).astype(np.int32))
|
||||
updates = Tensor(np.arange(34, 43).reshape((3, 3)).astype(np.float32))
|
||||
output = scatter_update_net(inputx, indices, updates)
|
||||
expected = np.array([[37., 38., 39.],
|
||||
[34., 35., 36.],
|
||||
[40., 41., 42.]], dtype=np.float32)
|
||||
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_scatter_update_float16():
|
||||
inputx = Tensor(np.zeros((2, 3)).astype(np.float16))
|
||||
indices = Tensor(np.array([0, 1]).astype(np.int32))
|
||||
updates = Tensor(np.arange(6).reshape((2, 3)).astype(np.float16))
|
||||
output = scatter_update_net(inputx, indices, updates)
|
||||
expected = np.array([[0., 1., 2.],
|
||||
[3., 4., 5.]])
|
||||
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_scatter_update_large_float16():
|
||||
inputx = Tensor(np.zeros((4, 3)).astype(np.float16))
|
||||
indices = Tensor(np.array([[2, 1], [0, 3]]).astype(np.int32))
|
||||
updates = Tensor(np.arange(63, 75).reshape((2, 2, 3)).astype(np.float16))
|
||||
output = scatter_update_net(inputx, indices, updates)
|
||||
expected = np.array([[69., 70., 71.],
|
||||
[66., 67., 68.],
|
||||
[63., 64., 65.],
|
||||
[72., 73., 74.]])
|
||||
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_scatter_update_disordered_float16():
|
||||
inputx = Tensor(np.flip(np.arange(34, 46).reshape(3, 4).astype(np.float16)))
|
||||
indices = Tensor(np.array([1, 2]).astype(np.int32))
|
||||
updates = Tensor(np.arange(63, 71).reshape((2, 4)).astype(np.float16))
|
||||
output = scatter_update_net(inputx, indices, updates)
|
||||
expected = np.array([[45., 44., 43., 42.],
|
||||
[63., 64., 65., 66.],
|
||||
[67., 68., 69., 70.]])
|
||||
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
|
Loading…
Reference in new issue