parent
85a020575a
commit
4acdcad5d6
@ -0,0 +1,121 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
import mindspore.common.dtype as mstype
|
||||
import mindspore.ops as P
|
||||
from mindspore.common import ParameterTuple
|
||||
import torch
|
||||
import torch.nn as nn_pt
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class GradofAllInputsAndParams(nn.Cell):
|
||||
def __init__(self, net, sens=False):
|
||||
super().__init__()
|
||||
self.grad = P.GradOperation(get_all=True, get_by_list=True, sens_param=sens)
|
||||
self.net = net
|
||||
self.params = ParameterTuple(self.net.trainable_params())
|
||||
|
||||
def construct(self, *x):
|
||||
out = self.grad(self.net, self.params)(*x)
|
||||
return out
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_pynative_diff_shape_with_while_in_construct():
|
||||
class WhileNetMs(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.conv = nn.Conv2d(1, 1, 3, weight_init='ones', pad_mode='pad')
|
||||
|
||||
def construct(self, x, flag):
|
||||
while flag:
|
||||
if flag > 1:
|
||||
x = self.conv(x)
|
||||
else:
|
||||
x = x + 1
|
||||
flag = flag - 1
|
||||
return x
|
||||
|
||||
class WhileNetPt(nn_pt.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.conv = nn_pt.Conv2d(in_channels=1, out_channels=1, kernel_size=(3, 3),
|
||||
stride=1, padding=0, bias=False)
|
||||
self.weight = nn_pt.Parameter(torch.from_numpy(np.ones([1, 1, 3, 3]).astype(np.float32)))
|
||||
self.conv.register_parameter('weight', self.weight)
|
||||
|
||||
def forward(self, x, flag):
|
||||
while flag:
|
||||
if flag > 1:
|
||||
x = self.conv(x)
|
||||
else:
|
||||
x = x + 1
|
||||
flag = flag - 1
|
||||
return x
|
||||
|
||||
net = WhileNetMs()
|
||||
input_ms = Tensor(np.random.rand(1, 1, 224, 224).astype(np.float32))
|
||||
flag = 2
|
||||
out = net(input_ms, flag)
|
||||
backnet = GradofAllInputsAndParams(net)
|
||||
backout = backnet(input_ms, Tensor(flag, mstype.int32))
|
||||
|
||||
comparenet = WhileNetPt()
|
||||
torch_input = torch.from_numpy(input_ms.asnumpy())
|
||||
torch_input.requires_grad = True
|
||||
torch_flag = torch.from_numpy(np.array(flag))
|
||||
torch_flag.requires_grad = False
|
||||
out_good = comparenet(torch_input, torch_flag)
|
||||
grad = torch.from_numpy(np.ones_like(out_good.detach().numpy()).astype(np.float32))
|
||||
out_good.backward(gradient=grad)
|
||||
assert np.allclose(out_good.detach().numpy(), out.asnumpy(), 0.01, 0.01)
|
||||
assert np.allclose(torch_input.grad.numpy(), backout[0][0].asnumpy(), 0.01, 0.01)
|
||||
assert np.allclose(comparenet.weight.grad.numpy(), backout[1][0].asnumpy(), 0.01, 0.01)
|
||||
|
||||
flag = 3
|
||||
out = net(input_ms, flag)
|
||||
backout = backnet(input_ms, Tensor(flag, mstype.int32))
|
||||
torch_flag = torch.from_numpy(np.array(flag))
|
||||
torch_flag.requires_grad = False
|
||||
comparenet.zero_grad()
|
||||
torch_input.grad.zero_()
|
||||
out_good = comparenet(torch_input, torch_flag)
|
||||
grad = torch.from_numpy(np.ones_like(out_good.detach().numpy()).astype(np.float32))
|
||||
out_good.backward(gradient=grad)
|
||||
assert np.allclose(out_good.detach().numpy(), out.asnumpy(), 0.01, 0.01)
|
||||
assert np.allclose(torch_input.grad.numpy(), backout[0][0].asnumpy(), 0.01, 0.01)
|
||||
assert np.allclose(comparenet.weight.grad.numpy(), backout[1][0].asnumpy(), 0.01, 0.01)
|
||||
|
||||
input_ms = Tensor(np.random.rand(1, 1, 112, 112).astype(np.float32))
|
||||
flag = 4
|
||||
backout = backnet(input_ms, Tensor(flag, mstype.int32))
|
||||
torch_input = torch.from_numpy(input_ms.asnumpy())
|
||||
torch_input.requires_grad = True
|
||||
torch_flag = torch.from_numpy(np.array(flag))
|
||||
torch_flag.requires_grad = False
|
||||
comparenet.zero_grad()
|
||||
out_good = comparenet(torch_input, torch_flag)
|
||||
grad = torch.from_numpy(np.ones_like(out_good.detach().numpy()).astype(np.float32))
|
||||
out_good.backward(gradient=grad)
|
||||
assert np.allclose(torch_input.grad.numpy(), backout[0][0].asnumpy(), 0.01, 0.01)
|
||||
assert np.allclose(comparenet.weight.grad.numpy(), backout[1][0].asnumpy(), 0.01, 0.01)
|
Loading…
Reference in new issue