| 
						
						
							
								
							
						
						
					 | 
				
				 | 
				 | 
				
					@ -28,17 +28,27 @@ from mindspore.ops.composite import GradOperation
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					@pytest.mark.platform_x86_gpu_training
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					@pytest.mark.env_onecard
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					def test_pad_basic():
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    # confirm array is being padded with 0's
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    """
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    Test array is being padded with 0's
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    """
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    # float32
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    test_arr = np.array([[1, 2], [3, 4]]).astype(np.float32)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    test_arr_expected = np.array(
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					        [[0, 0, 0, 0], [0, 1, 2, 0], [0, 3, 4, 0], [0, 0, 0, 0]]).astype(np.float32)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    x_test = Tensor(test_arr, dtype=mindspore.float32)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    pad_op = nn.Pad(mode='CONSTANT', paddings=((1, 1), (1, 1)))
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    y_test = pad_op(x_test).asnumpy()
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    np.testing.assert_array_equal(y_test, test_arr_expected)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    # float16
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    test_arr = np.array([[1, 2], [3, 4]]).astype(np.float16)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    test_arr_expected = np.array(
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					        [[0, 0, 0, 0], [0, 1, 2, 0], [0, 3, 4, 0], [0, 0, 0, 0]]).astype(np.float16)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    x_test = Tensor(test_arr, dtype=mindspore.float16)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    pad_op = nn.Pad(mode='CONSTANT', paddings=((1, 1), (1, 1)))
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    y_test = pad_op(x_test).asnumpy()
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    np.testing.assert_array_equal(y_test, test_arr_expected)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
	
		
			
				
					| 
						
						
						
							
								
							
						
					 | 
				
				 | 
				 | 
				
					@ -46,12 +56,13 @@ def test_pad_basic():
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					@pytest.mark.platform_x86_gpu_training
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					@pytest.mark.env_onecard
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					def test_pad_row():
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    # Confirm correct row padding
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    """
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    Test correct row padding
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    """
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    test_arr_1 = np.random.rand(40, 40).astype(np.float32)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    test_paddings_1 = ((2, 3), (0, 0))
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    test_arr_2 = np.random.randn(3, 10, 30, 30).astype(np.float32)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    test_paddings_2 = ((0, 0), (0, 0), (3, 0), (0, 0))
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
	
		
			
				
					| 
						
						
						
							
								
							
						
					 | 
				
				 | 
				 | 
				
					@ -60,7 +71,6 @@ def test_pad_row():
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    x_test_1 = Tensor(np.array(test_arr_1), dtype=mindspore.float32)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    x_test_2 = Tensor(np.array(test_arr_2), dtype=mindspore.float32)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    y_test_1 = pad_op_row_1(x_test_1).asnumpy()
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    y_test_2 = pad_op_row_2(x_test_2).asnumpy()
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
	
		
			
				
					| 
						
						
						
							
								
							
						
					 | 
				
				 | 
				 | 
				
					@ -77,12 +87,13 @@ def test_pad_row():
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					@pytest.mark.platform_x86_gpu_training
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					@pytest.mark.env_onecard
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					def test_pad_column():
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    # Confirm correct column padding
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    """
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    Test correct column padding
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    """
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    test_arr_1 = np.random.randn(40, 40).astype(np.float32)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    test_paddings_1 = ((0, 0), (3, 3))
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    test_arr_2 = np.random.randn(3, 10, 30, 30).astype(np.float32)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    test_paddings_2 = ((0, 0), (0, 0), (0, 0), (6, 1))
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
	
		
			
				
					| 
						
						
						
							
								
							
						
					 | 
				
				 | 
				 | 
				
					@ -91,7 +102,6 @@ def test_pad_column():
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    x_test_1 = Tensor(np.array(test_arr_1), dtype=mindspore.float32)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    x_test_2 = Tensor(np.array(test_arr_2), dtype=mindspore.float32)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    y_test_1 = pad_op_col_1(x_test_1).asnumpy()
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    y_test_2 = pad_op_col_2(x_test_2).asnumpy()
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
	
		
			
				
					| 
						
						
						
							
								
							
						
					 | 
				
				 | 
				 | 
				
					@ -108,15 +118,34 @@ def test_pad_column():
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					@pytest.mark.platform_x86_gpu_training
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					@pytest.mark.env_onecard
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					def test_pad_3d_pad():
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    # Confirm correct 3d padding - row, column, channel
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    """
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    Test full 3d padding, with all 3 input types
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    """
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    # float32
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    test_arr = np.random.randn(5, 3, 30, 30).astype(np.float32)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    test_paddings = ((0, 0), (2, 1), (0, 1), (0, 2))  # padding 3 dims now
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    pad_op_3d = nn.Pad(mode='CONSTANT', paddings=test_paddings)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    x_test = Tensor(np.array(test_arr), dtype=mindspore.float32)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    y_test = pad_op_3d(x_test).asnumpy()
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    assert y_test.shape == (5, 6, 31, 32)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    np.testing.assert_equal(test_arr, y_test[:, 2:-1, :-1, :-2])
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    # float16
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    test_arr = np.random.randn(5, 3, 30, 30).astype(np.float16)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    test_paddings = ((0, 0), (2, 1), (0, 1), (0, 2))
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    pad_op_3d = nn.Pad(mode='CONSTANT', paddings=test_paddings)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    x_test = Tensor(np.array(test_arr), dtype=mindspore.float16)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    y_test = pad_op_3d(x_test).asnumpy()
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    assert y_test.shape == (5, 6, 31, 32)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    np.testing.assert_equal(test_arr, y_test[:, 2:-1, :-1, :-2])
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    # int32
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    test_arr = np.random.randint(1, 3000, (5, 3, 30, 30)).astype(np.int32)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    test_paddings = ((0, 0), (2, 1), (0, 1), (0, 2))
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    pad_op_3d = nn.Pad(mode='CONSTANT', paddings=test_paddings)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    x_test = Tensor(np.array(test_arr), dtype=mindspore.int32)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    y_test = pad_op_3d(x_test).asnumpy()
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    assert y_test.shape == (5, 6, 31, 32)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    np.testing.assert_equal(test_arr, y_test[:, 2:-1, :-1, :-2])
 | 
				
			
			
		
	
	
		
			
				
					| 
						
							
								
							
						
						
							
								
							
						
						
					 | 
				
				 | 
				 | 
				
					@ -147,17 +176,36 @@ class Net(nn.Cell):
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					@pytest.mark.platform_x86_gpu_training
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					@pytest.mark.env_onecard
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					def test_pad_3d_backprop():
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    # Confirm correct 3d padding backprop
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    """
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    Confirm correct 3d padding backprop
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    """
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    net = Grad(Net())
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    padded_shape = (5, 10, 32, 32)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    # float32
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    test_arr = np.random.randn(5, 3, 30, 30).astype(np.float32)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    x_test = Tensor(test_arr, dtype=mindspore.float32)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    padded_shape = (5, 10, 32, 32)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    dy = np.random.randn(*padded_shape).astype(np.float32)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    expected_dx = dy[:, 4:-3, 1:-1, :-2]
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    dx = net(x_test, Tensor(dy))
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    dx = dx[0].asnumpy()
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    np.testing.assert_array_equal(dx, expected_dx)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    net = Grad(Net())
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    # float16
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    test_arr = np.random.randn(5, 3, 30, 30).astype(np.float16)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    x_test = Tensor(test_arr, dtype=mindspore.float16)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    dy = np.random.randn(*padded_shape).astype(np.float16)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    expected_dx = dy[:, 4:-3, 1:-1, :-2]
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    dx = net(x_test, Tensor(dy))
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    dx = dx[0].asnumpy()
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    np.testing.assert_array_equal(dx, expected_dx)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    # int32
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    test_arr = np.random.randint(1, 3000, (5, 3, 30, 30)).astype(np.int32)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    x_test = Tensor(test_arr, dtype=mindspore.int32)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    dy = np.random.randn(*padded_shape).astype(np.int32)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    expected_dx = dy[:, 4:-3, 1:-1, :-2]
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    dx = net(x_test, Tensor(dy))
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    dx = dx[0].asnumpy()
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    np.testing.assert_array_equal(dx, expected_dx)
 | 
				
			
			
		
	
	
		
			
				
					| 
						
						
						
							
								
							
						
					 | 
				
				 | 
				 | 
				
					@ -167,7 +215,9 @@ def test_pad_3d_backprop():
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					@pytest.mark.platform_x86_gpu_training
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					@pytest.mark.env_onecard
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					def test_pad_error_cases():
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    # Test against common errorneous inputs to catch correctly
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    """
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    Test against common errorneous inputs to trigger correct errors
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    """
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    # TEST 1 - Neg padding values
 | 
				
			
			
		
	
	
		
			
				
					| 
						
							
								
							
						
						
						
					 | 
				
				 | 
				 | 
				
					
 
 |