|
|
|
@ -35,8 +35,8 @@ inline __device__ half my_pow(half a, double b) {
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
inline __device__ void GammaAndBetaThreadReduce(const int &col, const int &row_dim, const int &col_dim,
|
|
|
|
|
const T &epsilon, const T *dy, const T *x, const T *mean, const T *var,
|
|
|
|
|
T *dg, T *db) {
|
|
|
|
|
const int &mean_dim, const T &epsilon, const T *dy, const T *x,
|
|
|
|
|
const T *mean, const T *var, T *dg, T *db) {
|
|
|
|
|
int loop_num = (row_dim + NUM_PER_THREAD_REDUCE - 1) / NUM_PER_THREAD_REDUCE;
|
|
|
|
|
for (int i = threadIdx.x; i < loop_num; i += blockDim.x) {
|
|
|
|
|
for (int j = 0; j < NUM_PER_THREAD_REDUCE; j++) {
|
|
|
|
@ -46,7 +46,8 @@ inline __device__ void GammaAndBetaThreadReduce(const int &col, const int &row_d
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int pos = row * col_dim + col;
|
|
|
|
|
dg[0] += dy[pos] * my_pow(var[row] + epsilon, -0.5) * (x[pos] - mean[row]);
|
|
|
|
|
int mean_offset = pos / mean_dim;
|
|
|
|
|
dg[0] += dy[pos] * my_pow(var[mean_offset] + epsilon, -0.5) * (x[pos] - mean[mean_offset]);
|
|
|
|
|
db[0] += dy[pos];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
@ -89,8 +90,9 @@ inline __device__ void GammaAndBetaBlockReduce(const int &col, const int &row_di
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
__global__ void GammaAndBetaPropKernel(const int row_dim, const int col_dim, const T epsilon, const T *dy, const T *x,
|
|
|
|
|
const T *mean_addr, const T *var_addr, T *dg_addr, T *db_addr) {
|
|
|
|
|
__global__ void GammaAndBetaPropKernel(const int row_dim, const int col_dim, const int mean_dim, const T epsilon,
|
|
|
|
|
const T *dy, const T *x, const T *mean_addr, const T *var_addr, T *dg_addr,
|
|
|
|
|
T *db_addr) {
|
|
|
|
|
// row: [0:param_axis]
|
|
|
|
|
// col: [param_axis:]
|
|
|
|
|
// dg[i][j] = dy[i][j] * (var[i] + epsilon, -0.5) * (x[i][j] - mean[i])
|
|
|
|
@ -98,7 +100,7 @@ __global__ void GammaAndBetaPropKernel(const int row_dim, const int col_dim, con
|
|
|
|
|
for (int col = blockIdx.x; col < col_dim; col += gridDim.x) {
|
|
|
|
|
T dg = 0;
|
|
|
|
|
T db = 0;
|
|
|
|
|
GammaAndBetaThreadReduce(col, row_dim, col_dim, epsilon, dy, x, mean_addr, var_addr, &dg, &db);
|
|
|
|
|
GammaAndBetaThreadReduce(col, row_dim, col_dim, mean_dim, epsilon, dy, x, mean_addr, var_addr, &dg, &db);
|
|
|
|
|
GammaAndBetaWarpReduce(&dg, &db);
|
|
|
|
|
GammaAndBetaBlockReduce(col, row_dim, &dg, &db, dg_addr, db_addr);
|
|
|
|
|
}
|
|
|
|
@ -239,8 +241,12 @@ void LayerNormGrad(const int &row_dim, const int &col_dim, const int ¶m_dim,
|
|
|
|
|
mean, var, gamma, dx);
|
|
|
|
|
|
|
|
|
|
share_mem_size = thread_per_block / WARP_SIZE * 2 * sizeof(T);
|
|
|
|
|
GammaAndBetaPropKernel<<<col_dim, thread_per_block, share_mem_size, stream>>>(row_dim, col_dim, epsilon, dy, x, mean,
|
|
|
|
|
var, dg, db);
|
|
|
|
|
// GammaAndBetaPropKernel<<<col_dim, thread_per_block, share_mem_size, stream>>>(row_dim, col_dim, epsilon, dy, x,
|
|
|
|
|
// mean,
|
|
|
|
|
// var, dg, db);
|
|
|
|
|
int param_reduce_dim = row_dim * col_dim / param_dim;
|
|
|
|
|
GammaAndBetaPropKernel<<<param_dim, thread_per_block, share_mem_size, stream>>>(param_reduce_dim, param_dim, col_dim,
|
|
|
|
|
epsilon, dy, x, mean, var, dg, db);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template void LayerNormGrad(const int &row_dim, const int &col_dim, const int ¶m_dim, const float &epsilon,
|
|
|
|
|