!8003 Repeat Elements Grad GPU Kernel

Merge pull request !8003 from JonathanY/repeat_grad
pull/8003/MERGE
mindspore-ci-bot 4 years ago committed by Gitee
commit 4f4eadda8f

@ -0,0 +1,29 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cstdint>
#include "backend/kernel_compiler/gpu/arrays/repeat_elements_grad_gpu_kernel.h"
namespace mindspore {
namespace kernel {
MS_REG_GPU_KERNEL_ONE(RepeatElementsGrad,
KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
RepeatElementsGradGpuKernel, half)
MS_REG_GPU_KERNEL_ONE(RepeatElementsGrad, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
RepeatElementsGradGpuKernel, int32_t)
} // namespace kernel
} // namespace mindspore

@ -0,0 +1,119 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_REPEAT_ELEMENTS_GRAD_GPU_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_REPEAT_ELEMENTS_GRAD_GPU_KERNEL_H_
#include "backend/kernel_compiler/gpu/cuda_impl/repeat_elements_grad_impl.cuh"
#include <cuda_runtime.h>
#include <algorithm>
#include <vector>
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
namespace mindspore {
namespace kernel {
template <typename T>
class RepeatElementsGradGpuKernel : public GpuKernel {
public:
RepeatElementsGradGpuKernel()
: rep_(1), axis_(0), input_size_(1), output_size_(0), outer_size_(1), repeat_dim_size_(1), inner_size_(1) {}
~RepeatElementsGradGpuKernel() = default;
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
T *dy = GetDeviceAddress<T>(inputs, 0);
T *dx = GetDeviceAddress<T>(outputs, 0);
CalRepeatElementsGrad(dy, rep_, dx, outer_size_, repeat_dim_size_, inner_size_,
reinterpret_cast<cudaStream_t>(stream_ptr));
return true;
}
bool Init(const CNodePtr &kernel_node) override {
size_t input_count = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_count != 1) {
MS_LOG(EXCEPTION) << input_count << " arguments were provided, but RepeatElementGradGpuKernel expects 1.";
}
std::vector<size_t> dy_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
int dy_dim = dy_shape.size();
axis_ = GetAttr<int>(kernel_node, "axis");
if (axis_ < 0) {
axis_ += dy_dim;
}
rep_ = GetAttr<int>(kernel_node, "rep");
if (axis_ >= dy_dim) {
axis_ = dy_dim - 1;
rep_ = 1;
}
for (int i = 0; i < dy_dim; i++) {
auto e = dy_shape[i];
input_size_ *= e;
input_shape_.push_back(e);
if (i < axis_) {
outer_size_ *= e;
} else if (i > axis_) {
inner_size_ *= e;
} else {
repeat_dim_size_ = e / rep_;
}
}
output_size_ = input_size_ / rep_;
output_shape_ = input_shape_;
output_shape_[axis_] /= rep_;
InitSizeLists();
return true;
}
protected:
void InitSizeLists() override {
input_size_list_.push_back(input_size_ * sizeof(T));
output_size_list_.push_back(output_size_ * sizeof(T));
}
private:
int rep_;
int axis_;
size_t input_size_;
size_t output_size_;
int outer_size_;
int repeat_dim_size_;
int inner_size_;
std::vector<int> input_shape_;
std::vector<int> output_shape_;
std::vector<size_t> input_size_list_;
std::vector<size_t> output_size_list_;
std::vector<size_t> workspace_size_list_;
};
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_REPEAT_ELEMENTS_GRAD_GPU_KERNEL_H_

@ -0,0 +1,48 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cuda_runtime.h>
#include "repeat_elements_grad_impl.cuh"
#include "runtime/device/gpu/cuda_common.h"
template <typename T>
__global__ void RepeatElementsGrad(const int dx_size, const T *dy, const int rep, T *dx, const int outer_size,
const int repeat_dim_size, const int inner_size) {
for (size_t t_id = blockIdx.x * blockDim.x + threadIdx.x; t_id < dx_size; t_id += gridDim.x * blockDim.x) {
int inner_id = t_id % inner_size;
int repeat_dim_id = t_id / inner_size % repeat_dim_size;
int outer_id = t_id / inner_size / repeat_dim_size;
T dx_i = static_cast<T>(0);
for (int i = 0; i < rep; i++) {
dx_i += dy[(outer_id * rep * repeat_dim_size * inner_size) + (repeat_dim_id * rep * inner_size) +
(i * inner_size) + inner_id];
}
dx[t_id] = dx_i;
}
}
template <typename T>
void CalRepeatElementsGrad(const T *dy, const int rep, T *dx, const int outer_size, const int repeat_dim_size,
const int inner_size, cudaStream_t cuda_stream) {
const int dx_size = outer_size * repeat_dim_size * inner_size;
RepeatElementsGrad<<<GET_BLOCKS(dx_size), GET_THREADS, 0, cuda_stream>>>(dx_size, dy, rep, dx, outer_size,
repeat_dim_size, inner_size);
}
template void CalRepeatElementsGrad<int>(const int *dy, const int rep, int *dx, const int outer_size,
const int repeat_dim_size, const int inner_size, cudaStream_t cuda_stream);
template void CalRepeatElementsGrad<half>(const half *dy, const int rep, half *dx, const int outer_size,
const int repeat_dim_size, const int inner_size, cudaStream_t cuda_stream);

@ -0,0 +1,26 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_REPEAT_ELEMENTS_GRAD_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_REPEAT_ELEMENTS_GRAD_H_
#include <cuda_runtime.h>
template <typename T>
void CalRepeatElementsGrad(const T *dy, const int rep, T *dx, const int outer_size, const int repeat_dim_size,
const int inner_size, cudaStream_t cuda_stream);
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_REPEAT_ELEMENTS_GRAD_H_

@ -848,3 +848,13 @@ def get_bprop_unique(self):
dx = op(dout, out)
return (dx,)
return bprop
@bprop_getters.register(P.RepeatElements)
def get_bprop_repeat_elements(self):
"""Generate bprop for RepeatElements"""
op = G.RepeatElementsGrad(self.rep, self.axis)
def bprop(x, y, dy):
dx = op(dy)
return (dx,)
return bprop

@ -1731,3 +1731,24 @@ class LRNGrad(PrimitiveWithInfer):
def infer_shape(self, grads, x, y):
return x
class RepeatElementsGrad(PrimitiveWithInfer):
"""Gradients of RepeatElements operation."""
@prim_attr_register
def __init__(self, rep, axis=0):
self.init_prim_io_names(inputs=['dy'], outputs=['dx'])
validator.check_value_type("rep", rep, [int], self.name)
validator.check_value_type("axis", axis, [int], self.name)
self.rep = rep
self.axis = axis
def infer_dtype(self, dy_type):
validator.check_type_name("dy_type", dy_type, [mstype.float16, mstype.float32, mstype.int32], self.name)
return dy_type
def infer_shape(self, dy_shape):
dx_shape = dy_shape
dx_shape[self.axis] = dy_shape[self.axis] // self.rep
return dx_shape

File diff suppressed because it is too large Load Diff
Loading…
Cancel
Save