revert tile.py & sink_size = get_dataset_size()

pull/6745/head
wuweikang 5 years ago
parent 7acc66a3a5
commit 501e01470e

@ -26,8 +26,9 @@ tile_op_info = TBERegOp("Tile") \
.attr("multiples", "optional", "listInt", "all")\
.input(0, "x1", False, "required", "all") \
.output(0, "y", False, "required", "all") \
.op_pattern("dynamicFormat") \
.dtype_format(DataType.None_None, DataType.None_None) \
.dtype_format(DataType.I32_Default, DataType.I32_Default) \
.dtype_format(DataType.I16_Default, DataType.I16_Default) \
.dtype_format(DataType.F32_Default, DataType.F32_Default) \
.get_op_info()

@ -548,6 +548,8 @@ class Model:
>>> model.train(2, dataset)
"""
check_bool(dataset_sink_mode)
if sink_size == -1:
sink_size = train_dataset.get_dataset_size()
check_int(sink_size)
if sink_size < -1 or sink_size == 0:
raise ValueError("The sink_size must be -1 or positive, but got sink_size {}.".format(sink_size))

@ -21,7 +21,7 @@ from mindspore import Tensor
class MindData:
""" Stub for MindData """
def __init__(self, size=None, batch_size=None, repeat_count=1,
def __init__(self, size=1, batch_size=None, repeat_count=1,
np_types=None, output_shapes=None, input_indexs=()):
self._size = size
self._batch_size = batch_size

@ -113,7 +113,7 @@ class TrainOneStepWithLossScaleCell(nn.Cell):
class DatasetLenet(MindData):
def __init__(self, predict, label, length=3):
super(DatasetLenet, self).__init__()
super(DatasetLenet, self).__init__(size=length)
self.predict = predict
self.label = label
self.index = 0

Loading…
Cancel
Save