modify relu sigmoid leaky_relu in activation

pull/4390/head
liuzhongkai 5 years ago
parent 2eb55946f6
commit 56d32b4e77

@ -0,0 +1,70 @@
#pragma OPENCL EXTENSION cl_arm_printf : enable
#define SLICES 4
#define UP_DIV(x, y) (((x) + (y) - (1)) / (y))
#define FLT4 float4
#define MIN(X, Y) (X < Y ? X : Y)
#define READ_FLT4 read_imagef
#define WRITE_FLT4 write_imagef
__constant sampler_t smp_zero = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST;
__kernel void ReluScalar(__read_only image2d_t input, __write_only image2d_t output, const int4 input_shape,
const float alpha) {
int C = input_shape.w; // channel size
int Y = get_global_id(0); // height id
int X = get_global_id(1); // weight id
for (int num = 0; num < UP_DIV(C, SLICES); ++num) {
FLT4 in_c4 = READ_FLT4(input, smp_zero, (int2)(X * UP_DIV(C, SLICES) + num, Y)); // NHWC4: H WC
FLT4 tmp;
tmp.x = in_c4.x >= 0 ? in_c4.x : in_c4.x * alpha;
tmp.y = in_c4.y >= 0 ? in_c4.y : in_c4.y * alpha;
tmp.z = in_c4.z >= 0 ? in_c4.z : in_c4.z * alpha;
tmp.w = in_c4.w >= 0 ? in_c4.w : in_c4.w * alpha;
WRITE_FLT4(output, (int2)(X * UP_DIV(C, SLICES) + num, Y), tmp); // NHWC4: H WC
}
}
__kernel void Relu(__read_only image2d_t input, __write_only image2d_t output, const int4 input_shape) {
int C = input_shape.w; // channel size
int Y = get_global_id(0); // height id
int X = get_global_id(1); // weight id
for (int num = 0; num < UP_DIV(C, SLICES); ++num) {
FLT4 in_c4 = READ_FLT4(input, smp_zero, (int2)(X * UP_DIV(C, SLICES) + num, Y)); // NHWC4: H WC
FLT4 tmp;
tmp.x = in_c4.x >= 0 ? in_c4.x : 0;
tmp.y = in_c4.y >= 0 ? in_c4.y : 0;
tmp.z = in_c4.z >= 0 ? in_c4.z : 0;
tmp.w = in_c4.w >= 0 ? in_c4.w : 0;
WRITE_FLT4(output, (int2)(X * UP_DIV(C, SLICES) + num, Y), tmp); // NHWC4: H WC
}
}
__kernel void Relu6(__read_only image2d_t input, __write_only image2d_t output, const int4 input_shape) {
int C = input_shape.w; // channel size
int Y = get_global_id(0); // height id
int X = get_global_id(1); // weight id
for (int num = 0; num < UP_DIV(C, SLICES); ++num) {
FLT4 in_c4 = READ_FLT4(input, smp_zero, (int2)(X * UP_DIV(C, SLICES) + num, Y)); // NHWC4: H WC
FLT4 tmp;
tmp.x = in_c4.x >= 0 ? MIN(in_c4.x, 6) : 0;
tmp.y = in_c4.y >= 0 ? MIN(in_c4.y, 6) : 0;
tmp.z = in_c4.z >= 0 ? MIN(in_c4.z, 6) : 0;
tmp.w = in_c4.w >= 0 ? MIN(in_c4.w, 6) : 0;
WRITE_FLT4(output, (int2)(X * UP_DIV(C, SLICES) + num, Y), tmp); // NHWC4: H WC
}
}
__kernel void Sigmoid(__read_only image2d_t input, __write_only image2d_t output, const int4 input_shape) {
int C = input_shape.w; // channel size
int Y = get_global_id(0); // height id
int X = get_global_id(1); // weight id
for (int num = 0; num < UP_DIV(C, SLICES); ++num) {
FLT4 in_c4 = READ_FLT4(input, smp_zero, (int2)(X * UP_DIV(C, SLICES) + num, Y)); // NHWC4: H WC
FLT4 tmp;
tmp.x = 1 / (1 + exp(-in_c4.x));
tmp.y = 1 / (1 + exp(-in_c4.y));
tmp.z = 1 / (1 + exp(-in_c4.z));
tmp.w = 1 / (1 + exp(-in_c4.w));
WRITE_FLT4(output, (int2)(X * UP_DIV(C, SLICES) + num, Y), tmp); // NHWC4: H WC
}
}

@ -1,28 +0,0 @@
#pragma OPENCL EXTENSION cl_arm_printf : enable
#define SLICES 4
#define UP_DIV(x, y) (((x) + (y) - (1)) / (y))
#define FLT4 float4
#define READ_FLT4 read_imagef
#define WRITE_FLT4 write_imagef
__constant sampler_t smp_zero = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST;
__kernel void LeakyRelu(__read_only image2d_t input, __write_only image2d_t output, const int4 input_shape,
const float alpha) {
// int B = input_shape.x; // size
// int H = input_shape.y; //
// int W = input_shape.z;
int C = input_shape.w;
int Y = get_global_id(0); // height id
int X = get_global_id(1); // weight id
for (int num = 0; num < UP_DIV(C, SLICES); ++num) {
FLT4 in_c4 = READ_FLT4(input, smp_zero, (int2)(X * UP_DIV(C, SLICES) + num, Y)); // NHWC4: H WC
FLT4 tmp;
tmp.x = in_c4.x >= 0 ? in_c4.x : in_c4.x * alpha;
tmp.y = in_c4.y >= 0 ? in_c4.y : in_c4.y * alpha;
tmp.z = in_c4.z >= 0 ? in_c4.z : in_c4.z * alpha;
tmp.w = in_c4.w >= 0 ? in_c4.w : in_c4.w * alpha;
WRITE_FLT4(output, (int2)(X * UP_DIV(C, SLICES) + num, Y), tmp); // NHWC4: H WC
}
}

@ -0,0 +1,146 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <vector>
#include <string>
#include <set>
#include "src/runtime/kernel/opencl/kernel/activation.h"
#include "schema/model_generated.h"
#include "src/kernel_registry.h"
#include "src/runtime/runtime_api.h"
#include "include/errorcode.h"
#include "src/ops/ops.h"
#include "src/runtime/kernel/opencl/cl/fp32/activation.cl.inc"
using mindspore::kernel::KERNEL_ARCH::kGPU;
using mindspore::lite::KernelRegistrar;
using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_OK;
using mindspore::schema::ActivationType_LEAKY_RELU;
using mindspore::schema::ActivationType_RELU;
using mindspore::schema::ActivationType_RELU6;
using mindspore::schema::ActivationType_SIGMOID;
using mindspore::schema::PrimitiveType_Activation;
namespace mindspore::kernel {
int ActivationOpenClKernel::Init() {
const int max_shape_dim = 4;
if (in_tensors_[0]->shape().size() != max_shape_dim) {
MS_LOG(ERROR) << "Activate fun only support dim=4, but your dim=" << in_tensors_[0]->shape().size();
return RET_ERROR;
}
std::string program_name = "";
std::string kernel_name = "";
std::string source = activation_source_fp32;
if (type_ == ActivationType_RELU) {
program_name = "RELU";
kernel_name = "Relu";
} else if (type_ == ActivationType_RELU6) {
program_name = "RELU6";
kernel_name = "Relu6";
} else if (type_ == ActivationType_LEAKY_RELU) {
program_name = "LEAKY_RELU";
kernel_name = "ReluScalar";
} else if (type_ == ActivationType_SIGMOID) {
program_name = "SIGMOID";
kernel_name = "Sigmoid";
} else {
MS_LOG(ERROR) << "Activation type error";
return RET_ERROR;
}
std::set<std::string> build_options;
auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance();
ocl_runtime->LoadSource(program_name, source);
ocl_runtime->BuildKernel(kernel_, program_name, kernel_name, build_options);
MS_LOG(DEBUG) << op_parameter_->name_ << " init Done!";
return RET_OK;
}
int ActivationOpenClKernel::Run() {
MS_LOG(DEBUG) << op_parameter_->name_ << " begin running!";
int N = in_tensors_[0]->shape()[0];
int H = in_tensors_[0]->shape()[1];
int W = in_tensors_[0]->shape()[2];
int C = in_tensors_[0]->shape()[3];
cl_int4 input_shape = {N, H, W, C};
auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance();
int arg_idx = 0;
ocl_runtime->SetKernelArg(kernel_, arg_idx++, in_tensors_[0]->Data());
ocl_runtime->SetKernelArg(kernel_, arg_idx++, out_tensors_[0]->Data());
ocl_runtime->SetKernelArg(kernel_, arg_idx++, input_shape);
if (type_ == ActivationType_LEAKY_RELU) {
ocl_runtime->SetKernelArg(kernel_, arg_idx++, alpha_);
}
std::vector<size_t> local = {1, 1};
std::vector<size_t> global = {static_cast<size_t>(H), static_cast<size_t>(W)};
std::cout << type_ << " " << std::endl;
auto ret = ocl_runtime->RunKernel(kernel_, global, local, nullptr);
if (ret != RET_OK) {
MS_LOG(ERROR) << "Run kernel:" << op_parameter_->name_ << " fail.";
return RET_ERROR;
}
return RET_OK;
}
int ActivationOpenClKernel::GetImageSize(size_t idx, std::vector<size_t> *img_size) {
int H = in_tensors_[0]->shape()[1];
int W = in_tensors_[0]->shape()[2];
int C = in_tensors_[0]->shape()[3];
#ifdef ENABLE_FP16
size_t img_dtype = CL_HALF_FLOAT;
#else
size_t img_dtype = CL_FLOAT;
#endif
img_size->clear();
img_size->push_back(W * UP_DIV(C, C4NUM));
img_size->push_back(H);
img_size->push_back(img_dtype);
return RET_OK;
}
kernel::LiteKernel *OpenClActivationFp32KernelCreator(const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs,
OpParameter *opParameter, const lite::Context *ctx,
const kernel::KernelKey &desc, const lite::Primitive *primitive) {
if (inputs.size() == 0) {
MS_LOG(ERROR) << "Input data size must be greater than 0, but your size is " << inputs.size();
return nullptr;
}
if (inputs[0]->shape()[0] > 1) {
MS_LOG(ERROR) << "Activation kernel:" << opParameter->name_ << " failed: Unsupported multi-batch.";
return nullptr;
}
auto *kernel =
new (std::nothrow) ActivationOpenClKernel(reinterpret_cast<OpParameter *>(opParameter), inputs, outputs);
if (kernel == nullptr) {
MS_LOG(ERROR) << "New kernel:" << opParameter->name_ << "is nullptr.";
return nullptr;
}
auto ret = kernel->Init();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init activation kernel:" << opParameter->name_ << " failed!";
delete kernel;
return nullptr;
}
return kernel;
}
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Activation, OpenClActivationFp32KernelCreator)
} // namespace mindspore::kernel

@ -14,24 +14,26 @@
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_OPENCL_KERNEL_LEAKYRELU_H
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_OPENCL_KERNEL_LEAKYRELU_H_
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_OPENCL_KERNEL_ACTIVATION_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_OPENCL_KERNEL_ACTIVATION_H_
#include <vector>
#include <string>
#include "src/ir/tensor.h"
#include "src/runtime/kernel/opencl/opencl_kernel.h"
#include "schema/model_generated.h"
#include "src/runtime/opencl/opencl_runtime.h"
#include "src/runtime/kernel/opencl/opencl_kernel.h"
#include "src/runtime/kernel/arm/nnacl/fp32/activation.h"
namespace mindspore::kernel {
class LeakyReluOpenCLKernel : public OpenCLKernel {
class ActivationOpenClKernel : public OpenCLKernel {
public:
explicit LeakyReluOpenCLKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs)
: OpenCLKernel(parameter, inputs, outputs) {}
~LeakyReluOpenCLKernel() override{};
explicit ActivationOpenClKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs)
: OpenCLKernel(parameter, inputs, outputs) {
type_ = (reinterpret_cast<ActivationParameter *>(parameter))->type_;
alpha_ = (reinterpret_cast<ActivationParameter *>(parameter))->alpha_;
}
~ActivationOpenClKernel() override{};
int Init() override;
int Run() override;
@ -39,8 +41,9 @@ class LeakyReluOpenCLKernel : public OpenCLKernel {
private:
cl::Kernel kernel_;
int type_;
float alpha_;
};
} // namespace mindspore::kernel
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_OPENCL_KERNEL_LEAKYRELU_H_
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_OPENCL_KERNEL_ACTIVATION_H_

@ -161,7 +161,8 @@ kernel::LiteKernel *OpenCLArithmeticKernelCreator(const std::vector<lite::tensor
const std::vector<lite::tensor::Tensor *> &outputs,
OpParameter *opParameter, const lite::Context *ctx,
const kernel::KernelKey &desc, const lite::Primitive *primitive) {
auto *kernel = new ArithmeticOpenCLKernel(reinterpret_cast<OpParameter *>(opParameter), inputs, outputs, ctx);
auto *kernel =
new (std::nothrow) ArithmeticOpenCLKernel(reinterpret_cast<OpParameter *>(opParameter), inputs, outputs, ctx);
if (kernel == nullptr) {
MS_LOG(ERROR) << "Create OpenCL Arithmetic kernel failed!";
return nullptr;

@ -174,7 +174,8 @@ kernel::LiteKernel *OpenCLConv2dTransposeKernelCreator(const std::vector<lite::t
OpParameter *opParameter, const lite::Context *ctx,
const kernel::KernelKey &desc,
const lite::Primitive *primitive) {
auto *kernel = new Conv2dTransposeOpenCLKernel(reinterpret_cast<OpParameter *>(opParameter), inputs, outputs);
auto *kernel =
new (std::nothrow) Conv2dTransposeOpenCLKernel(reinterpret_cast<OpParameter *>(opParameter), inputs, outputs);
if (kernel == nullptr) {
MS_LOG(ERROR) << "kernel " << opParameter->name_ << "is nullptr.";
return nullptr;

@ -193,7 +193,8 @@ kernel::LiteKernel *OpenCLDepthwiseConv2dKernelCreator(const std::vector<lite::t
OpParameter *opParameter, const lite::Context *ctx,
const kernel::KernelKey &desc,
const lite::Primitive *primitive) {
auto *kernel = new DepthwiseConv2dOpenCLKernel(reinterpret_cast<OpParameter *>(opParameter), inputs, outputs);
auto *kernel =
new (std::nothrow) DepthwiseConv2dOpenCLKernel(reinterpret_cast<OpParameter *>(opParameter), inputs, outputs);
if (kernel == nullptr) {
MS_LOG(ERROR) << "kernel " << opParameter->name_ << "is nullptr.";
return nullptr;

@ -1,122 +0,0 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <string>
#include <set>
#include <vector>
#include "src/kernel_registry.h"
#include "include/errorcode.h"
#include "src/runtime/kernel/opencl/kernel/leaky_relu.h"
#include "src/runtime/opencl/opencl_runtime.h"
#include "src/runtime/kernel/opencl/cl/fp32/leaky_relu.cl.inc"
#include "src/runtime/kernel/arm/nnacl/leaky_relu_parameter.h"
using mindspore::kernel::KERNEL_ARCH::kGPU;
using mindspore::lite::KernelRegistrar;
using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_OK;
using mindspore::schema::PrimitiveType_LeakyReLU;
namespace mindspore::kernel {
int LeakyReluOpenCLKernel::Init() {
if (in_tensors_[0]->shape().size() != 4) {
MS_LOG(ERROR) << "leaky_relu only support dim=4, but your dim=" << in_tensors_[0]->shape().size();
return RET_ERROR;
}
std::set<std::string> build_options;
std::string source = leaky_relu_source_fp32;
std::string program_name = "LeakyRelu";
std::string kernel_name = "LeakyRelu";
auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance();
ocl_runtime->LoadSource(program_name, source);
ocl_runtime->BuildKernel(kernel_, program_name, kernel_name, build_options);
MS_LOG(DEBUG) << kernel_name << " Init Done!";
return RET_OK;
}
int LeakyReluOpenCLKernel::Run() {
auto param = reinterpret_cast<LeakyReluParameter *>(op_parameter_);
MS_LOG(DEBUG) << " Running!";
int N = in_tensors_[0]->shape()[0];
int H = in_tensors_[0]->shape()[1];
int W = in_tensors_[0]->shape()[2];
int C = in_tensors_[0]->shape()[3];
cl_int4 input_shape = {N, H, W, C};
auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance();
int arg_idx = 0;
ocl_runtime->SetKernelArg(kernel_, arg_idx++, in_tensors_[0]->Data());
ocl_runtime->SetKernelArg(kernel_, arg_idx++, out_tensors_[0]->Data());
ocl_runtime->SetKernelArg(kernel_, arg_idx++, input_shape);
ocl_runtime->SetKernelArg(kernel_, arg_idx++, param->alpha);
std::vector<size_t> local = {1, 1};
std::vector<size_t> global = {static_cast<size_t>(H), static_cast<size_t>(W)};
ocl_runtime->RunKernel(kernel_, global, local, nullptr);
return RET_OK;
}
int LeakyReluOpenCLKernel::GetImageSize(size_t idx, std::vector<size_t> *img_size) {
int H = in_tensors_[0]->shape()[1];
int W = in_tensors_[0]->shape()[2];
int C = in_tensors_[0]->shape()[3];
#ifdef ENABLE_FP16
size_t img_dtype = CL_HALF_FLOAT;
#else
size_t img_dtype = CL_FLOAT;
#endif
img_size->clear();
img_size->push_back(W * UP_DIV(C, C4NUM));
img_size->push_back(H);
img_size->push_back(img_dtype);
return RET_OK;
}
kernel::LiteKernel *OpenCLLeakyReluKernelCreator(const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs,
OpParameter *opParameter, const lite::Context *ctx,
const kernel::KernelKey &desc, const lite::Primitive *primitive) {
if (inputs.size() == 0) {
MS_LOG(ERROR) << "Input data size must be greater than 0, but your size is " << inputs.size();
return nullptr;
}
if (inputs[0]->shape()[0] > 1) {
MS_LOG(ERROR) << "Init `leaky relu` kernel failed: Unsupported multi-batch.";
return nullptr;
}
auto *kernel = new LeakyReluOpenCLKernel(reinterpret_cast<OpParameter *>(opParameter), inputs, outputs);
if (kernel == nullptr) {
MS_LOG(ERROR) << "kernel " << opParameter->name_ << "is nullptr.";
return nullptr;
}
auto ret = kernel->Init();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init `Leaky Relu` kernel failed!";
delete kernel;
return nullptr;
}
return kernel;
}
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_LeakyReLU, OpenCLLeakyReluKernelCreator)
} // namespace mindspore::kernel

@ -160,7 +160,8 @@ kernel::LiteKernel *OpenCLMatMulKernelCreator(const std::vector<lite::tensor::Te
if (opParameter->type_ == PrimitiveType_FullConnection) {
hasBias = (reinterpret_cast<MatMulParameter *>(opParameter))->has_bias_;
}
auto *kernel = new MatMulOpenCLKernel(reinterpret_cast<OpParameter *>(opParameter), inputs, outputs, hasBias);
auto *kernel =
new (std::nothrow) MatMulOpenCLKernel(reinterpret_cast<OpParameter *>(opParameter), inputs, outputs, hasBias);
if (kernel == nullptr) {
MS_LOG(ERROR) << "kernel " << opParameter->name_ << "is nullptr.";
return nullptr;

@ -145,7 +145,7 @@ kernel::LiteKernel *OpenCLPooling2dKernelCreator(const std::vector<lite::tensor:
const std::vector<lite::tensor::Tensor *> &outputs,
OpParameter *opParameter, const lite::Context *ctx,
const kernel::KernelKey &desc, const lite::Primitive *primitive) {
auto *kernel = new PoolingOpenCLKernel(reinterpret_cast<OpParameter *>(opParameter), inputs, outputs);
auto *kernel = new (std::nothrow)PoolingOpenCLKernel(reinterpret_cast<OpParameter *>(opParameter), inputs, outputs);
if (kernel == nullptr) {
MS_LOG(ERROR) << "Create OpenCL Pooling kernel failed!";
return nullptr;

@ -86,7 +86,7 @@ kernel::LiteKernel *OpenCLSoftMaxKernelCreator(const std::vector<lite::tensor::T
const std::vector<lite::tensor::Tensor *> &outputs,
OpParameter *opParameter, const lite::Context *ctx,
const kernel::KernelKey &desc, const lite::Primitive *primitive) {
auto *kernel = new SoftmaxOpenCLKernel(reinterpret_cast<OpParameter *>(opParameter), inputs, outputs);
auto *kernel = new (std::nothrow)SoftmaxOpenCLKernel(reinterpret_cast<OpParameter *>(opParameter), inputs, outputs);
if (kernel == nullptr) {
MS_LOG(ERROR) << "kernel " << opParameter->name_ << "is nullptr.";
return nullptr;

@ -109,7 +109,7 @@ kernel::LiteKernel *OpenCLTransposeKernelCreator(const std::vector<lite::tensor:
const std::vector<lite::tensor::Tensor *> &outputs,
OpParameter *opParameter, const lite::Context *ctx,
const kernel::KernelKey &desc, const lite::Primitive *primitive) {
auto *kernel = new TransposeOpenCLKernel(reinterpret_cast<OpParameter *>(opParameter), inputs, outputs);
auto *kernel = new (std::nothrow)TransposeOpenCLKernel(reinterpret_cast<OpParameter *>(opParameter), inputs, outputs);
if (kernel == nullptr) {
MS_LOG(ERROR) << "kernel " << opParameter->name_ << "is nullptr.";
return nullptr;

@ -142,7 +142,7 @@ if (SUPPORT_GPU)
${LITE_DIR}/src/runtime/kernel/opencl/kernel/matmul.cc
${LITE_DIR}/src/runtime/kernel/opencl/kernel/softmax.cc
${LITE_DIR}/src/runtime/kernel/opencl/kernel/concat.cc
${LITE_DIR}/src/runtime/kernel/opencl/kernel/leaky_relu.cc
${LITE_DIR}/src/runtime/kernel/opencl/kernel/activation.cc
${LITE_DIR}/src/runtime/kernel/opencl/kernel/conv2d_transpose.cc
${LITE_DIR}/src/runtime/kernel/opencl/kernel/transpose.cc
)
@ -320,14 +320,14 @@ if (SUPPORT_GPU)
${TEST_DIR}/ut/src/runtime/kernel/opencl/conv2d_transpose_tests.cc
${TEST_DIR}/ut/src/runtime/kernel/opencl/transpose_tests.cc
${TEST_DIR}/ut/src/runtime/kernel/opencl/convolution_tests.cc
${TEST_DIR}/ut/src/runtime/kernel/opencl/leakyrelu_tests.cc
${TEST_DIR}/ut/src/runtime/kernel/opencl/activation_tests.cc
)
endif()
if (ENABLE_FP16)
set(TEST_SRC
${TEST_SRC}
${TEST_DIR}/ut/src/runtime/kernel/arm/fp16/convolution_fp16_tests.cc)
)
endif ()

@ -0,0 +1,185 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <iostream>
#include "utils/log_adapter.h"
#include "common/common_test.h"
#include "mindspore/lite/src/common/file_utils.h"
#include "mindspore/lite/src/runtime/opencl/opencl_runtime.h"
#include "mindspore/lite/src/runtime/opencl/opencl_allocator.h"
#include "mindspore/lite/src/runtime/kernel/opencl/subgraph_opencl_kernel.h"
#include "mindspore/lite/src/runtime/kernel/arm/nnacl/fp32/activation.h"
#include "mindspore/lite/src/runtime/kernel/opencl/kernel/activation.h"
using mindspore::kernel::LiteKernel;
using mindspore::kernel::SubGraphOpenCLKernel;
using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_OK;
using mindspore::schema::ActivationType_LEAKY_RELU;
using mindspore::schema::ActivationType_RELU;
using mindspore::schema::ActivationType_RELU6;
using mindspore::schema::ActivationType_SIGMOID;
using mindspore::schema::PrimitiveType_Activation;
namespace mindspore {
class TestActivationOpenCL : public mindspore::CommonTest {};
void LoadActivationData(void *dst, size_t dst_size, const std::string &file_path) {
if (file_path.empty()) {
memset(dst, 0x00, dst_size);
} else {
auto src_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(file_path.c_str(), &dst_size));
memcpy(dst, src_data, dst_size);
}
}
void CompareRes(lite::tensor::Tensor *output_tensor, const std::string &standard_answer_file) {
auto *output_data = reinterpret_cast<float *>(output_tensor->Data());
size_t output_size = output_tensor->Size();
auto expect_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(standard_answer_file.c_str(), &output_size));
constexpr float atol = 0.0002;
for (int i = 0; i < output_tensor->ElementsNum(); ++i) {
if (std::fabs(output_data[i] - expect_data[i]) > atol) {
printf("error at idx[%d] expect=%.3f output=%.3f\n", i, expect_data[i], output_data[i]);
printf("error at idx[%d] expect=%.3f output=%.3f\n", i, expect_data[i], output_data[i]);
printf("error at idx[%d] expect=%.3f output=%.3f\n\n\n", i, expect_data[i], output_data[i]);
return;
}
}
printf("compare success!\n");
printf("compare success!\n");
printf("compare success!\n\n\n");
}
void printf_tensor(mindspore::lite::tensor::Tensor *in_data) {
auto input_data = reinterpret_cast<float *>(in_data->Data());
for (int i = 0; i < in_data->ElementsNum(); ++i) {
printf("%f ", input_data[i]);
}
printf("\n");
MS_LOG(INFO) << "Print tensor done";
}
kernel::ActivationOpenClKernel *create_kernel(lite::opencl::OpenCLAllocator *allocator,
const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs, std::string test_name,
int type, std::string in_file, float alpha = 0.2) {
auto *param = new (std::nothrow) ActivationParameter();
if (param == nullptr) {
MS_LOG(ERROR) << "New ActivationParameter fail.";
return nullptr;
}
memcpy(param->op_parameter_.name_, test_name.c_str(), test_name.size());
param->alpha_ = alpha;
param->type_ = type;
auto *kernel =
new (std::nothrow) kernel::ActivationOpenClKernel(reinterpret_cast<OpParameter *>(param), inputs, outputs);
if (kernel == nullptr) {
MS_LOG(ERROR) << "Kernel:" << test_name << " create fail.";
return nullptr;
}
auto ret = kernel->Init();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init " << test_name << " fail.";
return nullptr;
}
MS_LOG(INFO) << "Initialize input data";
LoadActivationData(inputs[0]->Data(), inputs[0]->Size(), in_file);
MS_LOG(INFO) << "==================input data================";
printf_tensor(inputs[0]);
return kernel;
}
int RunSubGraphOpenCLKernel(const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs,
kernel::ActivationOpenClKernel *kernel) {
MS_LOG(INFO) << "Create kernel SubGraphOpenCLKernel.";
std::vector<kernel::LiteKernel *> kernels{kernel};
auto *sub_graph = new (std::nothrow) kernel::SubGraphOpenCLKernel(inputs, outputs, kernels, kernels, kernels);
if (sub_graph == nullptr) {
MS_LOG(ERROR) << "Kernel SubGraphOpenCLKernel create fail.";
return RET_ERROR;
}
MS_LOG(INFO) << "Initialize sub_graph.";
auto ret = sub_graph->Init();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init sub_graph error.";
return RET_ERROR;
}
MS_LOG(INFO) << "Run SubGraphOpenCLKernel.";
ret = sub_graph->Run();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Run SubGraphOpenCLKernel error.";
return RET_ERROR;
}
return RET_OK;
}
TEST_F(TestActivationOpenCL, LeakyReluFp32_dim4) {
MS_LOG(INFO) << "Begin test:";
auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance();
ocl_runtime->Init();
auto allocator = ocl_runtime->GetAllocator();
MS_LOG(INFO) << "Init tensors.";
std::vector<int> input_shape = {1, 4, 3, 8};
auto data_type = kNumberTypeFloat32;
auto tensor_type = schema::NodeType_ValueNode;
auto *input_tensor = new lite::tensor::Tensor(data_type, input_shape, schema::Format_NHWC4, tensor_type);
auto *output_tensor = new lite::tensor::Tensor(data_type, input_shape, schema::Format_NHWC4, tensor_type);
std::vector<lite::tensor::Tensor *> inputs{input_tensor};
std::vector<lite::tensor::Tensor *> outputs{output_tensor};
// freamework to do!!! allocate memory by hand
inputs[0]->MallocData(allocator);
std::map<std::string, int> Test_Activation_Type;
std::map<std::string, std::string> Test_Res_File;
Test_Activation_Type["Relu"] = ActivationType_RELU;
Test_Activation_Type["Leaky_Relu"] = ActivationType_LEAKY_RELU;
Test_Activation_Type["Relu6"] = ActivationType_RELU6;
Test_Activation_Type["Sigmoid"] = ActivationType_SIGMOID;
Test_Res_File["Leaky_Relu"] = "/data/local/tmp/leaky_relu.bin";
Test_Res_File["Relu"] = "/data/local/tmp/relu.bin";
Test_Res_File["Relu6"] = "/data/local/tmp/relu6.bin";
Test_Res_File["Sigmoid"] = "/data/local/tmp/sigmoid.bin";
std::string in_file = "/data/local/tmp/in_data.bin";
std::map<std::string, int>::iterator it = Test_Activation_Type.begin();
while (it != Test_Activation_Type.end()) {
auto kernel = create_kernel(allocator, inputs, outputs, it->first, it->second, in_file, 0.3);
if (kernel == nullptr) {
MS_LOG(ERROR) << "Create kernel:" << it->first << " error.";
return;
}
auto ret = RunSubGraphOpenCLKernel(inputs, outputs, kernel);
if (ret != RET_OK) {
MS_LOG(ERROR) << it->first << " RunSubGraphOpenCLKernel error.";
return;
}
MS_LOG(INFO) << "==================output data================";
printf_tensor(outputs[0]);
CompareRes(output_tensor, Test_Res_File[it->first]);
delete kernel;
it++;
}
delete input_tensor;
delete output_tensor;
return;
}
} // namespace mindspore

@ -1,110 +0,0 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <iostream>
#include "utils/log_adapter.h"
#include "common/common_test.h"
#include "mindspore/lite/src/common/file_utils.h"
#include "src/runtime/kernel/arm/nnacl/pack.h"
#include "mindspore/lite/src/runtime/opencl/opencl_runtime.h"
#include "mindspore/lite/src/runtime/kernel/opencl/subgraph_opencl_kernel.h"
#include "mindspore/lite/src/runtime/kernel/opencl/kernel/leaky_relu.h"
#include "mindspore/lite/src/runtime/kernel/arm/nnacl/leaky_relu_parameter.h"
using mindspore::kernel::LeakyReluOpenCLKernel;
using mindspore::kernel::LiteKernel;
using mindspore::kernel::SubGraphOpenCLKernel;
namespace mindspore {
class TestLeakyReluOpenCL : public mindspore::CommonTest {};
void LoadDataLeakyRelu(void *dst, size_t dst_size, const std::string &file_path) {
if (file_path.empty()) {
memset(dst, 0x00, dst_size);
} else {
auto src_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(file_path.c_str(), &dst_size));
memcpy(dst, src_data, dst_size);
}
}
void CompareOutLeakyRelu(lite::tensor::Tensor *output_tensor, const std::string &standard_answer_file) {
auto *output_data = reinterpret_cast<float *>(output_tensor->Data());
size_t output_size = output_tensor->Size();
auto expect_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(standard_answer_file.c_str(), &output_size));
constexpr float atol = 0.0002;
for (int i = 0; i < output_tensor->ElementsNum(); ++i) {
if (std::fabs(output_data[i] - expect_data[i]) > atol) {
printf("error at idx[%d] expect=%.3f output=%.3f\n", i, expect_data[i], output_data[i]);
printf("error at idx[%d] expect=%.3f output=%.3f\n", i, expect_data[i], output_data[i]);
printf("error at idx[%d] expect=%.3f output=%.3f\n\n\n", i, expect_data[i], output_data[i]);
return;
}
}
printf("compare success!\n");
printf("compare success!\n");
printf("compare success!\n\n\n");
}
void printf_tensor(mindspore::lite::tensor::Tensor *in_data) {
auto input_data = reinterpret_cast<float *>(in_data->Data());
for (int i = 0; i < in_data->ElementsNum(); ++i) {
printf("%f ", input_data[i]);
}
printf("\n");
MS_LOG(INFO) << "Print tensor done";
}
TEST_F(TestLeakyReluOpenCL, LeakyReluFp32_dim4) {
std::string in_file = "/data/local/tmp/in_data.bin";
std::string standard_answer_file = "/data/local/tmp/out_data.bin";
MS_LOG(INFO) << "Begin test:";
auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance();
ocl_runtime->Init();
auto allocator = ocl_runtime->GetAllocator();
MS_LOG(INFO) << "Init tensors.";
std::vector<int> input_shape = {1, 4, 3, 8};
auto data_type = kNumberTypeFloat32;
auto tensor_type = schema::NodeType_ValueNode;
auto *input_tensor = new lite::tensor::Tensor(data_type, input_shape, schema::Format_NHWC4, tensor_type);
auto *output_tensor = new lite::tensor::Tensor(data_type, input_shape, schema::Format_NHWC4, tensor_type);
std::vector<lite::tensor::Tensor *> inputs{input_tensor};
std::vector<lite::tensor::Tensor *> outputs{output_tensor};
// freamework to do!!! allocate memory by hand
inputs[0]->MallocData(allocator);
auto param = new LeakyReluParameter();
param->alpha = 0.3;
auto *leakyrelu_kernel = new kernel::LeakyReluOpenCLKernel(reinterpret_cast<OpParameter *>(param), inputs, outputs);
leakyrelu_kernel->Init();
MS_LOG(INFO) << "initialize sub_graph";
std::vector<kernel::LiteKernel *> kernels{leakyrelu_kernel};
auto *sub_graph = new kernel::SubGraphOpenCLKernel(inputs, outputs, kernels, kernels, kernels);
sub_graph->Init();
MS_LOG(INFO) << "initialize input data";
LoadDataLeakyRelu(input_tensor->Data(), input_tensor->Size(), in_file);
MS_LOG(INFO) << "==================input data================";
printf_tensor(inputs[0]);
sub_graph->Run();
MS_LOG(INFO) << "==================output data================";
printf_tensor(outputs[0]);
CompareOutLeakyRelu(output_tensor, standard_answer_file);
}
} // namespace mindspore
Loading…
Cancel
Save