commit
57215ef000
@ -0,0 +1,148 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "tools/converter/quantizer/weight_quantizer.h"
|
||||
#include <list>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include "src/common/common.h"
|
||||
#include "ir/dtype/type_id.h"
|
||||
|
||||
using std::string;
|
||||
using std::vector;
|
||||
|
||||
namespace mindspore {
|
||||
namespace lite {
|
||||
namespace quant {
|
||||
|
||||
WeightQuantizer::WeightQuantizer(FuncGraphPtr graph, const string &weightSize,
|
||||
const std::string &convWeightChannelThreshold, const std::string &bitNum)
|
||||
: Quantizer(graph) {
|
||||
auto quantSize = static_cast<size_t>(std::stoull(weightSize));
|
||||
this->bitNum = static_cast<size_t>(std::stoull(bitNum));
|
||||
auto convQuantWeightChannelThreshold = static_cast<size_t>(std::stoull(convWeightChannelThreshold));
|
||||
mStrategy.reset(new QuantStrategy(quantSize, convQuantWeightChannelThreshold));
|
||||
}
|
||||
|
||||
STATUS WeightQuantizer::DoConvQuantize(const std::list<CNodePtr> &nodes) {
|
||||
for (auto &cnode : nodes) {
|
||||
if (!mStrategy->CanConvOpQuantized(cnode)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
auto primitive_c = GetValueNode<std::shared_ptr<PrimitiveC>>(cnode->input(0));
|
||||
if (primitive_c == nullptr) {
|
||||
MS_LOG(ERROR) << "primitive_c is nullptr";
|
||||
return RET_ERROR;
|
||||
}
|
||||
|
||||
auto inputNode = cnode->input(2);
|
||||
if (!inputNode->isa<Parameter>()) {
|
||||
return RET_ERROR;
|
||||
}
|
||||
|
||||
auto paramNode = inputNode->cast<ParameterPtr>();
|
||||
if (!paramNode->has_default()) {
|
||||
return RET_ERROR;
|
||||
}
|
||||
|
||||
std::vector<schema::QuantParamT> quant_params;
|
||||
primitive_c->AddInputQuantParam(quant_params);
|
||||
|
||||
auto op_type = (schema::PrimitiveType)primitive_c->Type();
|
||||
bool depthwise = op_type == schema::PrimitiveType_DepthwiseConv2D ? true : false;
|
||||
|
||||
ParamValueLitePtr param_value = std::static_pointer_cast<ParamValueLite>(paramNode->default_param());
|
||||
auto status = QuantFilter<uint8_t>(param_value, primitive_c, QuantType_WeightQuant, 255, 0,
|
||||
bitNum, true, depthwise);
|
||||
if (status != RET_OK) {
|
||||
MS_LOG(ERROR) << "QuantFilter failed : " << status;
|
||||
return status;
|
||||
}
|
||||
param_value->set_tensor_type(kNumberTypeUInt8);
|
||||
primitive_c->SetQuantType(schema::QuantType_WeightQuant);
|
||||
}
|
||||
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
STATUS WeightQuantizer::DoMulQuantize(const std::list<CNodePtr> &nodes) {
|
||||
for (auto &node : nodes) {
|
||||
if (!mStrategy->CanMulOpQuantized(node)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
ParamValueLitePtr param_value = nullptr;
|
||||
for (size_t i = 1; i < node->size(); i++) {
|
||||
auto inputNode = node->input(i);
|
||||
if (inputNode->isa<Parameter>() == true) {
|
||||
auto paramNode = inputNode->cast<ParameterPtr>();
|
||||
if ((paramNode != nullptr) && (paramNode->has_default() == true)) {
|
||||
param_value = std::static_pointer_cast<ParamValueLite>(paramNode->default_param());
|
||||
if ((param_value == nullptr) || (param_value->tensor_size() == 0)
|
||||
|| (param_value->tensor_shape().size() != 4)
|
||||
|| (param_value->tensor_addr() == nullptr)
|
||||
|| (param_value->tensor_type() != mindspore::kNumberTypeFloat32)) {
|
||||
param_value = nullptr;
|
||||
continue;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (param_value == nullptr) {
|
||||
MS_LOG(ERROR) << "No valid input param node !";
|
||||
return RET_ERROR;;
|
||||
}
|
||||
|
||||
auto primitive_c = GetValueNode<std::shared_ptr<PrimitiveC>>(node->input(0));
|
||||
if (primitive_c == nullptr) {
|
||||
MS_LOG(ERROR) << "primitive_c is nullptr";
|
||||
return RET_ERROR;
|
||||
}
|
||||
|
||||
auto status = QuantFilter<uint8_t>(param_value, primitive_c, QuantType_WeightQuant, 255, 0, bitNum, true, false);
|
||||
if (status != RET_OK) {
|
||||
MS_LOG(ERROR) << "QuantFilter failed : " << status;
|
||||
return status;
|
||||
}
|
||||
param_value->set_tensor_type(kNumberTypeUInt8);
|
||||
primitive_c->SetQuantType(schema::QuantType_WeightQuant);
|
||||
}
|
||||
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
STATUS WeightQuantizer::DoQuantize(FuncGraphPtr funcGraph) {
|
||||
auto ret = RET_OK;
|
||||
auto cnodes = funcGraph->GetOrderedCnodes();
|
||||
ret = DoConvQuantize(cnodes);
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "DoConvQuantize failed :" << ret;
|
||||
return ret;
|
||||
}
|
||||
ret = DoMulQuantize(cnodes);
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "DoMulQuantize failed :" << ret;
|
||||
return ret;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
} // namespace quant
|
||||
} // namespace lite
|
||||
} // namespace mindspore
|
||||
|
@ -0,0 +1,53 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef WEIGHT_QUANTIZER_H
|
||||
#define WEIGHT_QUANTIZER_H
|
||||
|
||||
#include <memory>
|
||||
#include <list>
|
||||
#include <string>
|
||||
#include "tools/converter/quantizer/quantizer.h"
|
||||
#include "tools/converter/quantizer/quantize_util.h"
|
||||
#include "ir/func_graph.h"
|
||||
#include "ir/anf.h"
|
||||
#include "include/model.h"
|
||||
#include "base/base.h"
|
||||
#include "abstract/dshape.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace lite {
|
||||
namespace quant {
|
||||
class WeightQuantizer : public Quantizer {
|
||||
public:
|
||||
WeightQuantizer(FuncGraphPtr graph, const std::string& weightSize,
|
||||
const std::string& covWeightChannelThreshold, const std::string& bitNum);
|
||||
|
||||
~WeightQuantizer() = default;
|
||||
|
||||
STATUS DoQuantize(FuncGraphPtr funcGraph) override;
|
||||
STATUS DoConvQuantize(const std::list<CNodePtr> &nodes);
|
||||
STATUS DoMulQuantize(const std::list<CNodePtr> &nodes);
|
||||
|
||||
private:
|
||||
std::unique_ptr<QuantStrategy> mStrategy;
|
||||
size_t bitNum;
|
||||
};
|
||||
} // namespace quant
|
||||
} // namespace lite
|
||||
} // namespace mindspore
|
||||
#endif
|
||||
|
Loading…
Reference in new issue