!1372 [Auto parallel] Add a new primitive EmbeddingLookup
Merge pull request !1372 from Xiaoda/add-embedinglookup-primitivepull/1372/MERGE
commit
57874cd61f
@ -0,0 +1,79 @@
|
||||
# Copyright 2019 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
|
||||
import mindspore as ms
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore import context
|
||||
from mindspore.common.api import _executor
|
||||
from mindspore.ops import composite as C
|
||||
from mindspore.ops import operations as P
|
||||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
self.loss = VirtualLoss()
|
||||
self.network = network
|
||||
|
||||
def construct(self, x, y):
|
||||
predict = self.network(x, y)
|
||||
return self.loss(predict)
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, shape, axis, offset, reduce_scatter_flag, split_num):
|
||||
super().__init__()
|
||||
self.index = Tensor(np.ones(shape), dtype=ms.int32)
|
||||
self.axis = axis
|
||||
self.offset = offset
|
||||
self.reduce_scatter_flag = reduce_scatter_flag
|
||||
self.split_num = split_num
|
||||
self.elu = P.EmbeddingLookup()
|
||||
self.mm = P.BatchMatMul()
|
||||
|
||||
def construct(self, x, y):
|
||||
out = self.elu(x, self.index, self.axis, self.offset, self.reduce_scatter_flag, self.split_num)
|
||||
out = self.mm(out, y)
|
||||
return out
|
||||
|
||||
|
||||
def test_embeddinglookup_reducescatter_false():
|
||||
shape = [8, 8]
|
||||
axis = 0
|
||||
offset = 8
|
||||
reduce_scatter_flag = False
|
||||
split_num = 1
|
||||
net = NetWithLoss(Net(shape, axis, offset, reduce_scatter_flag, split_num))
|
||||
net.set_auto_parallel()
|
||||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([8, 32, 8]), dtype=ms.float32)
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
|
||||
def test_embeddinglookup_reducescatter_true():
|
||||
shape = [8, 8]
|
||||
axis = 0
|
||||
offset = 8
|
||||
reduce_scatter_flag = True
|
||||
split_num = 8
|
||||
net = NetWithLoss(Net(shape, axis, offset, reduce_scatter_flag, split_num))
|
||||
net.set_auto_parallel()
|
||||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([1, 32, 8]), dtype=ms.float32)
|
||||
_executor.compile(net, x, y)
|
Loading…
Reference in new issue