|
|
|
@ -4437,7 +4437,7 @@ class FusedSparseAdam(PrimitiveWithInfer):
|
|
|
|
|
>>> epsilon = Tensor(1e-8, mstype.float32)
|
|
|
|
|
>>> gradient = Tensor(np.random.rand(2, 1, 2), mstype.float32)
|
|
|
|
|
>>> indices = Tensor([0, 1], mstype.int32)
|
|
|
|
|
>>> net(beta1_power, beta2_power, lr, beta1, beta2, epsilon, gradient, indices)
|
|
|
|
|
>>> output = net(beta1_power, beta2_power, lr, beta1, beta2, epsilon, gradient, indices)
|
|
|
|
|
>>> print(net.var.asnumpy())
|
|
|
|
|
[[[0.9996963 0.9996977 ]]
|
|
|
|
|
[[0.99970144 0.9996992 ]]
|
|
|
|
@ -4585,7 +4585,7 @@ class FusedSparseLazyAdam(PrimitiveWithInfer):
|
|
|
|
|
>>> epsilon = Tensor(1e-8, mstype.float32)
|
|
|
|
|
>>> gradient = Tensor(np.random.rand(2, 1, 2), mstype.float32)
|
|
|
|
|
>>> indices = Tensor([0, 1], mstype.int32)
|
|
|
|
|
>>> net(beta1_power, beta2_power, lr, beta1, beta2, epsilon, gradient, indices)
|
|
|
|
|
>>> output = net(beta1_power, beta2_power, lr, beta1, beta2, epsilon, gradient, indices)
|
|
|
|
|
>>> print(net.var.asnumpy())
|
|
|
|
|
[[[0.9996866 0.9997078]]
|
|
|
|
|
[[0.9997037 0.9996869]]
|
|
|
|
|