remove local defined mse and add missing mse/md5 validation

pull/2603/head
tinazhang66 5 years ago
parent 51c4f4a499
commit 5cd3136355

@ -20,7 +20,7 @@ import numpy as np
import mindspore.dataset.engine as de
import mindspore.dataset.transforms.vision.py_transforms as F
from mindspore import log as logger
from util import visualize_list
from util import visualize_list, diff_mse
DATA_DIR = "../data/dataset/testImageNetData/train/"
@ -75,7 +75,7 @@ def test_auto_contrast(plot=False):
num_samples = images_original.shape[0]
mse = np.zeros(num_samples)
for i in range(num_samples):
mse[i] = np.mean((images_auto_contrast[i] - images_original[i]) ** 2)
mse[i] = diff_mse(images_auto_contrast[i], images_original[i])
logger.info("MSE= {}".format(str(np.mean(mse))))
if plot:

@ -21,11 +21,13 @@ import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as c
import mindspore.dataset.transforms.vision.py_transforms as f
from mindspore import log as logger
from util import visualize_image, diff_mse
from util import visualize_image, visualize_list, diff_mse, save_and_check_md5, \
config_get_set_seed, config_get_set_num_parallel_workers
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
GENERATE_GOLDEN = False
def test_cut_out_op(plot=False):
"""
@ -34,7 +36,7 @@ def test_cut_out_op(plot=False):
logger.info("test_cut_out")
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"])
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
transforms_1 = [
f.Decode(),
@ -45,7 +47,7 @@ def test_cut_out_op(plot=False):
data1 = data1.map(input_columns=["image"], operations=transform_1())
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"])
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
decode_op = c.Decode()
cut_out_op = c.CutOut(80)
@ -74,25 +76,24 @@ def test_cut_out_op(plot=False):
visualize_image(image_1, image_2, mse)
def test_cut_out_op_multicut():
def test_cut_out_op_multicut(plot=False):
"""
Test Cutout
"""
logger.info("test_cut_out")
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"])
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
transforms_1 = [
f.Decode(),
f.ToTensor(),
f.RandomErasing(value='random')
]
transform_1 = f.ComposeOp(transforms_1)
data1 = data1.map(input_columns=["image"], operations=transform_1())
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"])
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
decode_op = c.Decode()
cut_out_op = c.CutOut(80, num_patches=10)
@ -104,19 +105,107 @@ def test_cut_out_op_multicut():
data2 = data2.map(input_columns=["image"], operations=transforms_2)
num_iter = 0
image_list_1, image_list_2 = [], []
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
num_iter += 1
image_1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
# C image doesn't require transpose
image_2 = item2["image"]
image_list_1.append(image_1)
image_list_2.append(image_2)
logger.info("shape of image_1: {}".format(image_1.shape))
logger.info("shape of image_2: {}".format(image_2.shape))
logger.info("dtype of image_1: {}".format(image_1.dtype))
logger.info("dtype of image_2: {}".format(image_2.dtype))
if plot:
visualize_list(image_list_1, image_list_2)
def test_cut_out_md5():
"""
Test Cutout with md5 check
"""
logger.info("test_cut_out_md5")
original_seed = config_get_set_seed(2)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
decode_op = c.Decode()
cut_out_op = c.CutOut(100)
data1 = data1.map(input_columns=["image"], operations=decode_op)
data1 = data1.map(input_columns=["image"], operations=cut_out_op)
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
transforms = [
f.Decode(),
f.ToTensor(),
f.Cutout(100)
]
transform = f.ComposeOp(transforms)
data2 = data2.map(input_columns=["image"], operations=transform())
# Compare with expected md5 from images
filename1 = "cut_out_01_c_result.npz"
save_and_check_md5(data1, filename1, generate_golden=GENERATE_GOLDEN)
filename2 = "cut_out_01_py_result.npz"
save_and_check_md5(data2, filename2, generate_golden=GENERATE_GOLDEN)
# Restore config
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers(original_num_parallel_workers)
def test_cut_out_comp(plot=False):
"""
Test Cutout with c++ and python op comparison
"""
logger.info("test_cut_out_comp")
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
transforms_1 = [
f.Decode(),
f.ToTensor(),
f.Cutout(200)
]
transform_1 = f.ComposeOp(transforms_1)
data1 = data1.map(input_columns=["image"], operations=transform_1())
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
transforms_2 = [
c.Decode(),
c.CutOut(200)
]
data2 = data2.map(input_columns=["image"], operations=transforms_2)
num_iter = 0
image_list_1, image_list_2 = [], []
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
num_iter += 1
image_1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
# C image doesn't require transpose
image_2 = item2["image"]
image_list_1.append(image_1)
image_list_2.append(image_2)
logger.info("shape of image_1: {}".format(image_1.shape))
logger.info("shape of image_2: {}".format(image_2.shape))
logger.info("dtype of image_1: {}".format(image_1.dtype))
logger.info("dtype of image_2: {}".format(image_2.dtype))
if plot:
visualize_list(image_list_1, image_list_2, visualize_mode=2)
if __name__ == "__main__":
test_cut_out_op(plot=True)
test_cut_out_op_multicut()
test_cut_out_op_multicut(plot=True)
test_cut_out_md5()
test_cut_out_comp(plot=True)

@ -20,10 +20,11 @@ import numpy as np
import mindspore.dataset.engine as de
import mindspore.dataset.transforms.vision.py_transforms as F
from mindspore import log as logger
from util import visualize_list
from util import visualize_list, diff_mse, save_and_check_md5
DATA_DIR = "../data/dataset/testImageNetData/train/"
GENERATE_GOLDEN = False
def test_equalize(plot=False):
"""
@ -75,12 +76,31 @@ def test_equalize(plot=False):
num_samples = images_original.shape[0]
mse = np.zeros(num_samples)
for i in range(num_samples):
mse[i] = np.mean((images_equalize[i] - images_original[i]) ** 2)
mse[i] = diff_mse(images_equalize[i], images_original[i])
logger.info("MSE= {}".format(str(np.mean(mse))))
if plot:
visualize_list(images_original, images_equalize)
def test_equalize_md5():
"""
Test Equalize with md5 check
"""
logger.info("Test Equalize")
# First dataset
data1 = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
transforms = F.ComposeOp([F.Decode(),
F.Equalize(),
F.ToTensor()])
data1 = data1.map(input_columns="image", operations=transforms())
# Compare with expected md5 from images
filename = "equalize_01_result.npz"
save_and_check_md5(data1, filename, generate_golden=GENERATE_GOLDEN)
if __name__ == "__main__":
test_equalize(plot=True)
test_equalize_md5()

@ -20,11 +20,12 @@ import numpy as np
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.py_transforms as vision
from mindspore import log as logger
from util import visualize_list
from util import visualize_list, save_and_check_md5
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
GENERATE_GOLDEN = False
def test_five_crop_op(plot=False):
"""
@ -63,7 +64,7 @@ def test_five_crop_op(plot=False):
logger.info("dtype of image_1: {}".format(image_1.dtype))
logger.info("dtype of image_2: {}".format(image_2.dtype))
if plot:
visualize_list(np.array([image_1]*10), (image_2 * 255).astype(np.uint8).transpose(0, 2, 3, 1))
visualize_list(np.array([image_1]*5), (image_2 * 255).astype(np.uint8).transpose(0, 2, 3, 1))
# The output data should be of a 4D tensor shape, a stack of 5 images.
assert len(image_2.shape) == 4
@ -93,6 +94,27 @@ def test_five_crop_error_msg():
assert error_msg in str(info.value)
def test_five_crop_md5():
"""
Test FiveCrop with md5 check
"""
logger.info("test_five_crop_md5")
# First dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
transforms = [
vision.Decode(),
vision.FiveCrop(100),
lambda images: np.stack([vision.ToTensor()(image) for image in images]) # 4D stack of 5 images
]
transform = vision.ComposeOp(transforms)
data = data.map(input_columns=["image"], operations=transform())
# Compare with expected md5 from images
filename = "five_crop_01_result.npz"
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
if __name__ == "__main__":
test_five_crop_op(plot=True)
test_five_crop_error_msg()
test_five_crop_md5()

@ -20,10 +20,11 @@ import numpy as np
import mindspore.dataset.engine as de
import mindspore.dataset.transforms.vision.py_transforms as F
from mindspore import log as logger
from util import visualize_list
from util import visualize_list, save_and_check_md5
DATA_DIR = "../data/dataset/testImageNetData/train/"
GENERATE_GOLDEN = False
def test_invert(plot=False):
"""
@ -82,5 +83,25 @@ def test_invert(plot=False):
visualize_list(images_original, images_invert)
def test_invert_md5():
"""
Test Invert with md5 check
"""
logger.info("Test Invert with md5 check")
# Generate dataset
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
transforms_invert = F.ComposeOp([F.Decode(),
F.Invert(),
F.ToTensor()])
data = ds.map(input_columns="image", operations=transforms_invert())
# Compare with expected md5 from images
filename = "invert_01_result.npz"
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
if __name__ == "__main__":
test_invert(plot=True)
test_invert_md5()

@ -73,12 +73,12 @@ def test_linear_transformation_op(plot=False):
if plot:
visualize_list(image, image_transformed)
def test_linear_transformation_md5_01():
def test_linear_transformation_md5():
"""
Test LinearTransformation op: valid params (transformation_matrix, mean_vector)
Expected to pass
"""
logger.info("test_linear_transformation_md5_01")
logger.info("test_linear_transformation_md5")
# Initialize parameters
height = 50
@ -102,12 +102,12 @@ def test_linear_transformation_md5_01():
filename = "linear_transformation_01_result.npz"
save_and_check_md5(data1, filename, generate_golden=GENERATE_GOLDEN)
def test_linear_transformation_md5_02():
def test_linear_transformation_exception_01():
"""
Test LinearTransformation op: transformation_matrix is not provided
Expected to raise ValueError
"""
logger.info("test_linear_transformation_md5_02")
logger.info("test_linear_transformation_exception_01")
# Initialize parameters
height = 50
@ -130,12 +130,12 @@ def test_linear_transformation_md5_02():
logger.info("Got an exception in DE: {}".format(str(e)))
assert "not provided" in str(e)
def test_linear_transformation_md5_03():
def test_linear_transformation_exception_02():
"""
Test LinearTransformation op: mean_vector is not provided
Expected to raise ValueError
"""
logger.info("test_linear_transformation_md5_03")
logger.info("test_linear_transformation_exception_02")
# Initialize parameters
height = 50
@ -158,12 +158,12 @@ def test_linear_transformation_md5_03():
logger.info("Got an exception in DE: {}".format(str(e)))
assert "not provided" in str(e)
def test_linear_transformation_md5_04():
def test_linear_transformation_exception_03():
"""
Test LinearTransformation op: transformation_matrix is not a square matrix
Expected to raise ValueError
"""
logger.info("test_linear_transformation_md5_04")
logger.info("test_linear_transformation_exception_03")
# Initialize parameters
height = 50
@ -187,12 +187,12 @@ def test_linear_transformation_md5_04():
logger.info("Got an exception in DE: {}".format(str(e)))
assert "square matrix" in str(e)
def test_linear_transformation_md5_05():
def test_linear_transformation_exception_04():
"""
Test LinearTransformation op: mean_vector does not match dimension of transformation_matrix
Expected to raise ValueError
"""
logger.info("test_linear_transformation_md5_05")
logger.info("test_linear_transformation_exception_04")
# Initialize parameters
height = 50
@ -217,9 +217,9 @@ def test_linear_transformation_md5_05():
assert "should match" in str(e)
if __name__ == '__main__':
test_linear_transformation_op(True)
test_linear_transformation_md5_01()
test_linear_transformation_md5_02()
test_linear_transformation_md5_03()
test_linear_transformation_md5_04()
test_linear_transformation_md5_05()
test_linear_transformation_op(plot=True)
test_linear_transformation_md5()
test_linear_transformation_exception_01()
test_linear_transformation_exception_02()
test_linear_transformation_exception_03()
test_linear_transformation_exception_04()

@ -21,11 +21,12 @@ import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as c_vision
import mindspore.dataset.transforms.vision.py_transforms as py_vision
from mindspore import log as logger
from util import diff_mse
from util import diff_mse, save_and_check_md5
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
GENERATE_GOLDEN = False
def test_pad_op():
"""
@ -116,6 +117,39 @@ def test_pad_grayscale():
assert shape1[0:1] == shape2[0:1]
def test_pad_md5():
"""
Test Pad with md5 check
"""
logger.info("test_pad_md5")
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
decode_op = c_vision.Decode()
pad_op = c_vision.Pad(150)
ctrans = [decode_op,
pad_op,
]
data1 = data1.map(input_columns=["image"], operations=ctrans)
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
pytrans = [
py_vision.Decode(),
py_vision.Pad(150),
py_vision.ToTensor(),
]
transform = py_vision.ComposeOp(pytrans)
data2 = data2.map(input_columns=["image"], operations=transform())
# Compare with expected md5 from images
filename1 = "pad_01_c_result.npz"
save_and_check_md5(data1, filename1, generate_golden=GENERATE_GOLDEN)
filename2 = "pad_01_py_result.npz"
save_and_check_md5(data2, filename2, generate_golden=GENERATE_GOLDEN)
if __name__ == "__main__":
test_pad_op()
test_pad_grayscale()
test_pad_md5()

@ -17,13 +17,16 @@ Testing RandomColor op in DE
"""
import numpy as np
import mindspore.dataset as ds
import mindspore.dataset.engine as de
import mindspore.dataset.transforms.vision.py_transforms as F
from mindspore import log as logger
from util import visualize_list
from util import visualize_list, diff_mse, save_and_check_md5, \
config_get_set_seed, config_get_set_num_parallel_workers
DATA_DIR = "../data/dataset/testImageNetData/train/"
GENERATE_GOLDEN = False
def test_random_color(degrees=(0.1, 1.9), plot=False):
"""
@ -32,14 +35,14 @@ def test_random_color(degrees=(0.1, 1.9), plot=False):
logger.info("Test RandomColor")
# Original Images
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
data = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
transforms_original = F.ComposeOp([F.Decode(),
F.Resize((224, 224)),
F.ToTensor()])
ds_original = ds.map(input_columns="image",
operations=transforms_original())
ds_original = data.map(input_columns="image",
operations=transforms_original())
ds_original = ds_original.batch(512)
@ -52,15 +55,15 @@ def test_random_color(degrees=(0.1, 1.9), plot=False):
axis=0)
# Random Color Adjusted Images
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
data = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
transforms_random_color = F.ComposeOp([F.Decode(),
F.Resize((224, 224)),
F.RandomColor(degrees=degrees),
F.ToTensor()])
ds_random_color = ds.map(input_columns="image",
operations=transforms_random_color())
ds_random_color = data.map(input_columns="image",
operations=transforms_random_color())
ds_random_color = ds_random_color.batch(512)
@ -75,14 +78,40 @@ def test_random_color(degrees=(0.1, 1.9), plot=False):
num_samples = images_original.shape[0]
mse = np.zeros(num_samples)
for i in range(num_samples):
mse[i] = np.mean((images_random_color[i] - images_original[i]) ** 2)
mse[i] = diff_mse(images_random_color[i], images_original[i])
logger.info("MSE= {}".format(str(np.mean(mse))))
if plot:
visualize_list(images_original, images_random_color)
def test_random_color_md5():
"""
Test RandomColor with md5 check
"""
logger.info("Test RandomColor with md5 check")
original_seed = config_get_set_seed(10)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
# Generate dataset
data = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
transforms = F.ComposeOp([F.Decode(),
F.RandomColor((0.5, 1.5)),
F.ToTensor()])
data = data.map(input_columns="image", operations=transforms())
# Compare with expected md5 from images
filename = "random_color_01_result.npz"
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
# Restore configuration
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers((original_num_parallel_workers))
if __name__ == "__main__":
test_random_color()
test_random_color(plot=True)
test_random_color(degrees=(0.5, 1.5), plot=True)
test_random_color_md5()

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save