!532 [AutoParallel]support multiple subgraphs

Merge pull request !532 from lichen/support_multiple_subgraphs_in_auto_parallel
pull/532/MERGE
mindspore-ci-bot 5 years ago committed by Gitee
commit 5cf09405e2

@ -399,7 +399,12 @@ Status AllreduceFusion::ProcessAllreduceFusion(const CNodePtr &ret) {
ret_ = ret;
root_graph_ = ret_->func_graph();
MS_EXCEPTION_IF_NULL(root_graph_);
auto forward_graph = ForwardGraph(root_graph_);
auto graph_set = ForwardGraph(root_graph_);
if (graph_set.size() > 1) {
MS_LOG(WARNING) << "AllReduce fusion don't support multiple subgraphs now.";
return SUCCESS;
}
auto forward_graph = *(graph_set.begin());
MS_EXCEPTION_IF_NULL(forward_graph);
forward_ret_ = forward_graph->get_return();
MS_EXCEPTION_IF_NULL(forward_ret_);

File diff suppressed because it is too large Load Diff

@ -24,6 +24,7 @@
#include <string>
#include <unordered_map>
#include <utility>
#include <set>
#include "./common.h"
#include "optimizer/opt.h"
@ -142,13 +143,13 @@ bool StepParallel(const FuncGraphPtr &func_graph, const opt::OptimizerPtr &optim
int32_t GetTupleGetItemIndex(const CNodePtr &cnode);
CNodePtr FindLossCNodeFromRoot(const FuncGraphPtr &root);
std::vector<CNodePtr> FindLossCNodeFromRoot(const FuncGraphPtr &root);
Status ParallelInit();
std::vector<std::string> ExtractInputsTensorName(const CNodePtr &node);
FuncGraphPtr ForwardGraph(const FuncGraphPtr &root);
std::set<FuncGraphPtr> ForwardGraph(const FuncGraphPtr &root);
} // namespace parallel
} // namespace mindspore

@ -0,0 +1,108 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
import mindspore as ms
from mindspore import Tensor, Parameter, ParameterTuple, context
from mindspore import nn
from mindspore.common.api import _executor
from mindspore.nn.optim import Adam, FTRL
from mindspore.ops import operations as P
from mindspore.ops import composite as C
from mindspore.ops import functional as F
import numpy as np
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.mul = P.Mul()
self.relu = P.ReLU()
self.param1 = Parameter(Tensor(np.ones([8, 8, 8, 8]).astype(np.float32)), name="wide")
self.param2 = Parameter(Tensor(np.ones([8, 8, 8, 8]).astype(np.float32)), name="deep")
def construct(self, x):
out = self.mul(x, self.param1)
out = self.mul(out, self.param2)
out = self.relu(out)
return out
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
self.sum = P.ReduceSum(keep_dims=False).set_strategy(strategy=((4, 1, 1, 1),))
self.mean = P.ReduceMean(keep_dims=False).set_strategy(strategy=((8, 1, 1, 1),))
self.net = network
def construct(self, x):
net_out = self.net(x)
loss1 = self.sum(net_out, -1)
loss2 = self.mean(net_out, -1)
return loss1, loss2
class IthOutputCell(nn.Cell):
def __init__(self, network, output_index):
super(IthOutputCell, self).__init__()
self.network = network
self.output_index = output_index
def construct(self, x1):
predict = self.network(x1)[self.output_index]
return predict
class TrainStepWrap(nn.Cell):
def __init__(self, network, sens=1000.0):
super(TrainStepWrap, self).__init__()
self.network = network
self.network.set_train()
self.trainable_params = network.trainable_params()
weights_w = []
weights_d = []
for params in self.trainable_params:
weights_w.append(params)
weights_d.append(params)
self.weights_w = ParameterTuple(weights_w)
self.weights_d = ParameterTuple(weights_d)
self.optimizer_w = FTRL(learning_rate=1e-2, params=self.weights_w,
l1=1e-8, l2=1e-8, initial_accum=1.0)
self.optimizer_d = Adam(self.weights_d, learning_rate=3.5e-4, eps=1e-8,
loss_scale=sens)
self.hyper_map = C.HyperMap()
self.grad_w = C.GradOperation('grad_w', get_by_list=True,
sens_param=True)
self.grad_d = C.GradOperation('grad_d', get_by_list=True,
sens_param=True)
self.sens = sens
self.loss_net_w = IthOutputCell(network, output_index=0)
self.loss_net_d = IthOutputCell(network, output_index=1)
def construct(self, x):
weights_w = self.weights_w
weights_d = self.weights_d
loss_w, loss_d = self.network(x)
sens_w = P.Fill()(P.DType()(loss_w), P.Shape()(loss_w), self.sens)
sens_d = P.Fill()(P.DType()(loss_d), P.Shape()(loss_d), self.sens)
grads_w = self.grad_w(self.loss_net_w, weights_w)(x, sens_w)
grads_d = self.grad_d(self.loss_net_d, weights_d)(x, sens_d)
return F.depend(loss_w, self.optimizer_w(grads_w)), F.depend(loss_d, self.optimizer_d(grads_d))
def test_two_subgraphs():
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
net = TrainStepWrap(NetWithLoss(Net()))
input_x = Tensor(np.ones([8, 8, 8, 8]), dtype=ms.float32)
_executor.compile(net, input_x)
Loading…
Cancel
Save