!532 [AutoParallel]support multiple subgraphs
Merge pull request !532 from lichen/support_multiple_subgraphs_in_auto_parallelpull/532/MERGE
commit
5cf09405e2
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,108 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License
|
||||
|
||||
import mindspore as ms
|
||||
from mindspore import Tensor, Parameter, ParameterTuple, context
|
||||
from mindspore import nn
|
||||
from mindspore.common.api import _executor
|
||||
from mindspore.nn.optim import Adam, FTRL
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import composite as C
|
||||
from mindspore.ops import functional as F
|
||||
import numpy as np
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.mul = P.Mul()
|
||||
self.relu = P.ReLU()
|
||||
self.param1 = Parameter(Tensor(np.ones([8, 8, 8, 8]).astype(np.float32)), name="wide")
|
||||
self.param2 = Parameter(Tensor(np.ones([8, 8, 8, 8]).astype(np.float32)), name="deep")
|
||||
|
||||
def construct(self, x):
|
||||
out = self.mul(x, self.param1)
|
||||
out = self.mul(out, self.param2)
|
||||
out = self.relu(out)
|
||||
return out
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
self.sum = P.ReduceSum(keep_dims=False).set_strategy(strategy=((4, 1, 1, 1),))
|
||||
self.mean = P.ReduceMean(keep_dims=False).set_strategy(strategy=((8, 1, 1, 1),))
|
||||
self.net = network
|
||||
|
||||
def construct(self, x):
|
||||
net_out = self.net(x)
|
||||
loss1 = self.sum(net_out, -1)
|
||||
loss2 = self.mean(net_out, -1)
|
||||
return loss1, loss2
|
||||
|
||||
|
||||
class IthOutputCell(nn.Cell):
|
||||
def __init__(self, network, output_index):
|
||||
super(IthOutputCell, self).__init__()
|
||||
self.network = network
|
||||
self.output_index = output_index
|
||||
|
||||
def construct(self, x1):
|
||||
predict = self.network(x1)[self.output_index]
|
||||
return predict
|
||||
|
||||
|
||||
class TrainStepWrap(nn.Cell):
|
||||
def __init__(self, network, sens=1000.0):
|
||||
super(TrainStepWrap, self).__init__()
|
||||
self.network = network
|
||||
self.network.set_train()
|
||||
self.trainable_params = network.trainable_params()
|
||||
weights_w = []
|
||||
weights_d = []
|
||||
for params in self.trainable_params:
|
||||
weights_w.append(params)
|
||||
weights_d.append(params)
|
||||
|
||||
self.weights_w = ParameterTuple(weights_w)
|
||||
self.weights_d = ParameterTuple(weights_d)
|
||||
self.optimizer_w = FTRL(learning_rate=1e-2, params=self.weights_w,
|
||||
l1=1e-8, l2=1e-8, initial_accum=1.0)
|
||||
self.optimizer_d = Adam(self.weights_d, learning_rate=3.5e-4, eps=1e-8,
|
||||
loss_scale=sens)
|
||||
self.hyper_map = C.HyperMap()
|
||||
self.grad_w = C.GradOperation('grad_w', get_by_list=True,
|
||||
sens_param=True)
|
||||
self.grad_d = C.GradOperation('grad_d', get_by_list=True,
|
||||
sens_param=True)
|
||||
self.sens = sens
|
||||
self.loss_net_w = IthOutputCell(network, output_index=0)
|
||||
self.loss_net_d = IthOutputCell(network, output_index=1)
|
||||
|
||||
def construct(self, x):
|
||||
weights_w = self.weights_w
|
||||
weights_d = self.weights_d
|
||||
loss_w, loss_d = self.network(x)
|
||||
sens_w = P.Fill()(P.DType()(loss_w), P.Shape()(loss_w), self.sens)
|
||||
sens_d = P.Fill()(P.DType()(loss_d), P.Shape()(loss_d), self.sens)
|
||||
grads_w = self.grad_w(self.loss_net_w, weights_w)(x, sens_w)
|
||||
grads_d = self.grad_d(self.loss_net_d, weights_d)(x, sens_d)
|
||||
return F.depend(loss_w, self.optimizer_w(grads_w)), F.depend(loss_d, self.optimizer_d(grads_d))
|
||||
|
||||
|
||||
def test_two_subgraphs():
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
|
||||
net = TrainStepWrap(NetWithLoss(Net()))
|
||||
input_x = Tensor(np.ones([8, 8, 8, 8]), dtype=ms.float32)
|
||||
_executor.compile(net, input_x)
|
Loading…
Reference in new issue