add elu for cpu

pull/11401/head
x00540480 4 years ago
parent d4ef0452a6
commit 5f43f08a5d

@ -43,6 +43,8 @@ dnnl::eltwise_forward::desc EltWiseCPUKernel::GetForwardEltwiseDesc(const CNodeP
return dnnl::eltwise_forward::desc(DnnlForward, dnnl::algorithm::eltwise_square, src_desc);
} else if (kernel_name == "Tanh") {
return dnnl::eltwise_forward::desc(DnnlForward, dnnl::algorithm::eltwise_tanh, src_desc);
} else if (kernel_name == "Elu") {
return dnnl::eltwise_forward::desc(DnnlForward, dnnl::algorithm::eltwise_elu, src_desc, 1.0);
} else {
MS_LOG(EXCEPTION) << "Eltwise operators don't support " << kernel_name;
}

@ -36,6 +36,11 @@ class EltWiseCPUKernel : public MKLCPUKernel {
dnnl::prop_kind DnnlForward = dnnl::prop_kind::forward_training;
};
MS_REG_CPU_KERNEL(Elu, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
EltWiseCPUKernel);
MS_REG_CPU_KERNEL(Elu, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
EltWiseCPUKernel);
MS_REG_CPU_KERNEL(Elu, KernelAttr().AddInputAttr(kNumberTypeFloat).AddOutputAttr(kNumberTypeFloat), EltWiseCPUKernel);
MS_REG_CPU_KERNEL(ReLU, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
EltWiseCPUKernel);
MS_REG_CPU_KERNEL(ReLU6, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),

@ -0,0 +1,59 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
class NetElu(nn.Cell):
def __init__(self):
super(NetElu, self).__init__()
self.elu = P.Elu()
def construct(self, x):
return self.elu(x)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_elu_fp16():
x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]).astype(np.float16))
expect = np.array([[-0.632, 4.0, -0.999], [2.0, -0.993, 9.0]]).astype(np.float16)
error = np.ones(shape=[2, 3]) * 1.0e-6
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
elu = NetElu()
output = elu(x)
diff = output.asnumpy() - expect
assert np.all(diff < error)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_elu_fp32():
x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]).astype(np.float32))
expect = np.array([[-0.632, 4.0, -0.999], [2.0, -0.993, 9.0]]).astype(np.float32)
error = np.ones(shape=[2, 3]) * 1.0e-6
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
elu = NetElu()
output = elu(x)
diff = output.asnumpy() - expect
assert np.all(diff < error)
Loading…
Cancel
Save