!239 Add dynamic learning rate decay and review optimizer code
Merge pull request !239 from fanglei/masterpull/239/MERGE
commit
60958d6b25
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,234 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
""" Test Dynamic Learning Rate """
|
||||
import pytest
|
||||
import mindspore
|
||||
from mindspore.nn import dynamic_lr as dr
|
||||
|
||||
milestone = [10, 20, 30]
|
||||
learning_rates = [0.1, 0.05, 0.01]
|
||||
learning_rate = 0.1
|
||||
end_learning_rate = 0.01
|
||||
decay_rate = 0.9
|
||||
total_step = 30
|
||||
step_per_epoch = 3
|
||||
decay_epoch = 2
|
||||
min_lr = 0.01
|
||||
max_lr = 0.1
|
||||
power = 0.5
|
||||
|
||||
class TestInputs:
|
||||
def test_milestone1(self):
|
||||
milestone1 = 1
|
||||
with pytest.raises(ValueError):
|
||||
dr.piecewise_constant_lr(milestone1, learning_rates)
|
||||
|
||||
def test_milestone2(self):
|
||||
milestone1 = [20, 10, 1]
|
||||
with pytest.raises(ValueError):
|
||||
dr.piecewise_constant_lr(milestone1, learning_rates)
|
||||
|
||||
milestone2 = [1.0, 2.0, True]
|
||||
with pytest.raises(ValueError):
|
||||
dr.piecewise_constant_lr(milestone2, learning_rates)
|
||||
|
||||
def test_learning_rates1(self):
|
||||
lr = True
|
||||
with pytest.raises(ValueError):
|
||||
dr.piecewise_constant_lr(milestone, lr)
|
||||
|
||||
def test_learning_rates2(self):
|
||||
lr = [1, 2, 1]
|
||||
with pytest.raises(ValueError):
|
||||
dr.piecewise_constant_lr(milestone, lr)
|
||||
|
||||
def test_learning_rate_type(self):
|
||||
lr = True
|
||||
with pytest.raises(TypeError):
|
||||
dr.exponential_decay_lr(lr, decay_rate, total_step, step_per_epoch, decay_epoch)
|
||||
|
||||
with pytest.raises(TypeError):
|
||||
dr.polynomial_decay_lr(lr, end_learning_rate, total_step, step_per_epoch, decay_epoch, power)
|
||||
|
||||
def test_learning_rate_value(self):
|
||||
lr = -1.0
|
||||
with pytest.raises(ValueError):
|
||||
dr.exponential_decay_lr(lr, decay_rate, total_step, step_per_epoch, decay_epoch)
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
dr.polynomial_decay_lr(lr, end_learning_rate, total_step, step_per_epoch, decay_epoch, power)
|
||||
|
||||
def test_end_learning_rate_type(self):
|
||||
lr = True
|
||||
with pytest.raises(TypeError):
|
||||
dr.polynomial_decay_lr(learning_rate, lr, total_step, step_per_epoch, decay_epoch, power)
|
||||
|
||||
def test_end_learning_rate_value(self):
|
||||
lr = -1.0
|
||||
with pytest.raises(ValueError):
|
||||
dr.polynomial_decay_lr(learning_rate, lr, total_step, step_per_epoch, decay_epoch, power)
|
||||
|
||||
def test_decay_rate_type(self):
|
||||
rate = 'a'
|
||||
with pytest.raises(TypeError):
|
||||
dr.exponential_decay_lr(learning_rate, rate, total_step, step_per_epoch, decay_epoch)
|
||||
|
||||
def test_decay_rate_value(self):
|
||||
rate = -1.0
|
||||
with pytest.raises(ValueError):
|
||||
dr.exponential_decay_lr(learning_rate, rate, total_step, step_per_epoch, decay_epoch)
|
||||
|
||||
def test_total_step1(self):
|
||||
total_step1 = 2.0
|
||||
with pytest.raises(ValueError):
|
||||
dr.exponential_decay_lr(learning_rate, decay_rate, total_step1, step_per_epoch, decay_epoch)
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
dr.cosine_decay_lr(min_lr, max_lr, total_step1, step_per_epoch, decay_epoch)
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
dr.polynomial_decay_lr(learning_rate, end_learning_rate, total_step1, step_per_epoch, decay_epoch, power)
|
||||
|
||||
def test_total_step2(self):
|
||||
total_step1 = -1
|
||||
with pytest.raises(ValueError):
|
||||
dr.exponential_decay_lr(learning_rate, decay_rate, total_step1, step_per_epoch, decay_epoch)
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
dr.cosine_decay_lr(min_lr, max_lr, total_step1, step_per_epoch, decay_epoch)
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
dr.polynomial_decay_lr(learning_rate, end_learning_rate, total_step1, step_per_epoch, decay_epoch, power)
|
||||
|
||||
def test_step_per_epoch1(self):
|
||||
step_per_epoch1 = True
|
||||
with pytest.raises(ValueError):
|
||||
dr.exponential_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch1, decay_epoch)
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
dr.cosine_decay_lr(min_lr, max_lr, total_step, step_per_epoch1, decay_epoch)
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
dr.polynomial_decay_lr(learning_rate, end_learning_rate, total_step, step_per_epoch1, decay_epoch, power)
|
||||
|
||||
def test_step_per_epoch2(self):
|
||||
step_per_epoch1 = -1
|
||||
with pytest.raises(ValueError):
|
||||
dr.exponential_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch1, decay_epoch)
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
dr.cosine_decay_lr(min_lr, max_lr, total_step, step_per_epoch1, decay_epoch)
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
dr.polynomial_decay_lr(learning_rate, end_learning_rate, total_step, step_per_epoch1, decay_epoch, power)
|
||||
|
||||
def test_decay_epoch1(self):
|
||||
decay_epoch1 = 'm'
|
||||
with pytest.raises(ValueError):
|
||||
dr.exponential_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch, decay_epoch1)
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
dr.cosine_decay_lr(min_lr, max_lr, total_step, step_per_epoch, decay_epoch1)
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
dr.polynomial_decay_lr(learning_rate, end_learning_rate, total_step, step_per_epoch, decay_epoch1, power)
|
||||
|
||||
def test_decay_epoch2(self):
|
||||
decay_epoch1 = -1
|
||||
with pytest.raises(ValueError):
|
||||
dr.exponential_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch, decay_epoch1)
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
dr.cosine_decay_lr(min_lr, max_lr, total_step, step_per_epoch, decay_epoch1)
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
dr.polynomial_decay_lr(learning_rate, end_learning_rate, total_step, step_per_epoch, decay_epoch1, power)
|
||||
|
||||
def test_is_stair(self):
|
||||
is_stair = 1
|
||||
with pytest.raises(ValueError):
|
||||
dr.exponential_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch, decay_epoch, is_stair)
|
||||
|
||||
def test_min_lr_type(self):
|
||||
min_lr1 = True
|
||||
with pytest.raises(TypeError):
|
||||
dr.cosine_decay_lr(min_lr1, max_lr, total_step, step_per_epoch, decay_epoch)
|
||||
|
||||
def test_min_lr_value(self):
|
||||
min_lr1 = -1.0
|
||||
with pytest.raises(ValueError):
|
||||
dr.cosine_decay_lr(min_lr1, max_lr, total_step, step_per_epoch, decay_epoch)
|
||||
|
||||
def test_max_lr_type(self):
|
||||
max_lr1 = 'a'
|
||||
with pytest.raises(TypeError):
|
||||
dr.cosine_decay_lr(min_lr, max_lr1, total_step, step_per_epoch, decay_epoch)
|
||||
|
||||
def test_max_lr_value(self):
|
||||
max_lr1 = -1.0
|
||||
with pytest.raises(ValueError):
|
||||
dr.cosine_decay_lr(min_lr, max_lr1, total_step, step_per_epoch, decay_epoch)
|
||||
|
||||
def test_power(self):
|
||||
power1 = True
|
||||
with pytest.raises(ValueError):
|
||||
dr.polynomial_decay_lr(learning_rate, end_learning_rate, total_step, step_per_epoch, decay_epoch, power1)
|
||||
|
||||
def test_update_decay_epoch(self):
|
||||
update_decay_epoch = 1
|
||||
with pytest.raises(ValueError):
|
||||
dr.polynomial_decay_lr(learning_rate, end_learning_rate, total_step, step_per_epoch, decay_epoch,
|
||||
power, update_decay_epoch)
|
||||
|
||||
|
||||
def test_learning_rate():
|
||||
lr = dr.piecewise_constant_lr(milestone, learning_rates)
|
||||
assert len(lr) == milestone[-1]
|
||||
|
||||
|
||||
def test_exponential_decay():
|
||||
lr1 = dr.exponential_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch, decay_epoch)
|
||||
assert len(lr1) == total_step
|
||||
|
||||
lr2 = dr.exponential_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch, decay_epoch, True)
|
||||
assert len(lr2) == total_step
|
||||
|
||||
|
||||
def test_enatural_exp_decay():
|
||||
lr1 = dr.natural_exp_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch, decay_epoch)
|
||||
assert len(lr1) == total_step
|
||||
|
||||
lr2 = dr.natural_exp_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch, decay_epoch, True)
|
||||
assert len(lr2) == total_step
|
||||
|
||||
|
||||
def test_inverse_decay():
|
||||
lr1 = dr.inverse_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch, decay_epoch)
|
||||
assert len(lr1) == total_step
|
||||
|
||||
lr2 = dr.inverse_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch, decay_epoch, True)
|
||||
assert len(lr2) == total_step
|
||||
|
||||
|
||||
def test_cosine_decay():
|
||||
lr = dr.cosine_decay_lr(min_lr, max_lr, total_step, step_per_epoch, decay_epoch)
|
||||
assert len(lr) == total_step
|
||||
|
||||
def test_polynomial_decay():
|
||||
lr1 = dr.polynomial_decay_lr(learning_rate, end_learning_rate, total_step, step_per_epoch, decay_epoch, power)
|
||||
assert len(lr1) == total_step
|
||||
lr2 = dr.polynomial_decay_lr(learning_rate, end_learning_rate, total_step, step_per_epoch, decay_epoch, power,
|
||||
True)
|
||||
assert len(lr2) == total_step
|
Loading…
Reference in new issue