|
|
|
@ -53,7 +53,7 @@
|
|
|
|
|
|
|
|
|
|
const char SINGLE_OP_GRAPH[] = "single_op_graph";
|
|
|
|
|
// primitive unable to infer value for constant input in PyNative mode
|
|
|
|
|
const std::set<std::string> vm_operators = {"make_ref", "HookBackward"};
|
|
|
|
|
const std::set<std::string> vm_operators = {"make_ref", "HookBackward", "stop_gradient"};
|
|
|
|
|
|
|
|
|
|
namespace mindspore {
|
|
|
|
|
namespace pynative {
|
|
|
|
@ -79,15 +79,12 @@ std::string GetId(const py::object &obj) {
|
|
|
|
|
if (p_list.size() == 0) {
|
|
|
|
|
return "empty";
|
|
|
|
|
}
|
|
|
|
|
to_process = p_list[0];
|
|
|
|
|
prefix = "tuple:";
|
|
|
|
|
if (!py::isinstance<tensor::Tensor>(to_process)) {
|
|
|
|
|
std::string key = "";
|
|
|
|
|
for (size_t i = 0; i < p_list.size(); ++i) {
|
|
|
|
|
key += std::string(py::str(p_list[i])) + ":";
|
|
|
|
|
}
|
|
|
|
|
return prefix + key;
|
|
|
|
|
std::string key = "";
|
|
|
|
|
for (size_t i = 0; i < p_list.size(); ++i) {
|
|
|
|
|
key += std::string(py::str(GetId(p_list[i]))) + ":";
|
|
|
|
|
}
|
|
|
|
|
return prefix + key;
|
|
|
|
|
}
|
|
|
|
|
if (py::isinstance<py::int_>(to_process)) {
|
|
|
|
|
return prefix + std::string(py::str(to_process));
|
|
|
|
@ -143,7 +140,8 @@ std::map<SignatureEnumDType, size_t> GetDstType(const py::tuple &py_args,
|
|
|
|
|
return dst_type;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
py::tuple ConvertInputs(const PrimitivePyPtr &prim, const py::list &args, py::tuple *const out_args) {
|
|
|
|
|
py::tuple ConvertInputs(const PrimitivePyPtr &prim, const py::list &args, py::tuple *const out_args,
|
|
|
|
|
py::list *out_args_list) {
|
|
|
|
|
auto &py_args = *out_args;
|
|
|
|
|
py::tuple input_mask(args.size());
|
|
|
|
|
for (size_t i = 0; i < args.size(); ++i) {
|
|
|
|
@ -171,8 +169,10 @@ py::tuple ConvertInputs(const PrimitivePyPtr &prim, const py::list &args, py::tu
|
|
|
|
|
auto tensor_ptr = py::cast<tensor::TensorPtr>(py_args[it->second]);
|
|
|
|
|
if (py::isinstance<py::int_>(py_args[i])) {
|
|
|
|
|
py_args[i] = std::make_shared<tensor::Tensor>(py::cast<py::int_>(py_args[i]), tensor_ptr->Dtype());
|
|
|
|
|
(*out_args_list)[i] = py_args[i];
|
|
|
|
|
} else {
|
|
|
|
|
py_args[i] = std::make_shared<tensor::Tensor>(py::cast<py::float_>(py_args[i]), tensor_ptr->Dtype());
|
|
|
|
|
(*out_args_list)[i] = py_args[i];
|
|
|
|
|
}
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
@ -195,7 +195,7 @@ void PynativeInfer(const PrimitivePyPtr &prim, const py::list &py_args, OpExecIn
|
|
|
|
|
op_exec_info->abstract = infer_res;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
OpExecInfoPtr GenerateOpExecInfo(const py::args &args) {
|
|
|
|
|
OpExecInfoPtr GenerateOpExecInfo(const py::args &args, py::list *const out_args) {
|
|
|
|
|
if (args.size() != PY_ARGS_NUM) {
|
|
|
|
|
MS_LOG(ERROR) << "Three args are needed by RunOp";
|
|
|
|
|
return nullptr;
|
|
|
|
@ -213,7 +213,7 @@ OpExecInfoPtr GenerateOpExecInfo(const py::args &args) {
|
|
|
|
|
size_t input_num = a.size();
|
|
|
|
|
op_exec_info->op_inputs = py::tuple(input_num);
|
|
|
|
|
|
|
|
|
|
op_exec_info->inputs_mask = ConvertInputs(prim, args[PY_INPUTS], &op_exec_info->op_inputs);
|
|
|
|
|
op_exec_info->inputs_mask = ConvertInputs(prim, args[PY_INPUTS], &op_exec_info->op_inputs, out_args);
|
|
|
|
|
// use python infer method
|
|
|
|
|
if (ignore_infer_prim.find(op_exec_info->op_name) == ignore_infer_prim.end()) {
|
|
|
|
|
PynativeInfer(prim, op_exec_info->op_inputs, op_exec_info.get());
|
|
|
|
@ -513,16 +513,15 @@ AnfNodePtr PynativeExecutor::MakeCNode(const OpExecInfoPtr &op_exec_info, const
|
|
|
|
|
auto prim = op_exec_info->py_primitive;
|
|
|
|
|
inputs.push_back(NewValueNode(prim));
|
|
|
|
|
py::tuple op_masks = op_exec_info->inputs_mask;
|
|
|
|
|
py::list op_args = args[PY_INPUTS];
|
|
|
|
|
AbstractBasePtrList args_spec_list;
|
|
|
|
|
for (size_t i = 0; i < op_args.size(); i++) {
|
|
|
|
|
auto node = GetInput(op_args[i], op_masks[i]);
|
|
|
|
|
for (size_t i = 0; i < args.size(); i++) {
|
|
|
|
|
auto node = GetInput(args[i], op_masks[i]);
|
|
|
|
|
args_spec_list.push_back(node->abstract());
|
|
|
|
|
inputs.push_back(node);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
auto cnode = curr_g_->NewCNode(inputs);
|
|
|
|
|
MS_LOG(DEBUG) << "MakeCnode set node " << cnode->DebugString();
|
|
|
|
|
MS_LOG(DEBUG) << "MakeCnode set node " << cnode->DebugString(4);
|
|
|
|
|
py::object out_real = out;
|
|
|
|
|
if (out.size() == 1) {
|
|
|
|
|
MS_LOG(DEBUG) << "MakeCnode out size is one.";
|
|
|
|
@ -534,10 +533,12 @@ AnfNodePtr PynativeExecutor::MakeCNode(const OpExecInfoPtr &op_exec_info, const
|
|
|
|
|
if (value.size() > 1) {
|
|
|
|
|
for (int i = 0; i < static_cast<int>(value.size()); i++) {
|
|
|
|
|
auto value_id = GetId(value[i]);
|
|
|
|
|
MS_LOG(DEBUG) << "MakeCnode set node id " << value_id;
|
|
|
|
|
set_obj_node_map(curr_g_, value_id, cnode, i);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
MS_LOG(DEBUG) << "MakeCnode set node id " << obj_id;
|
|
|
|
|
set_obj_node_map(curr_g_, obj_id, cnode);
|
|
|
|
|
set_pyobj(curr_g_, obj_id);
|
|
|
|
|
return cnode;
|
|
|
|
@ -545,12 +546,17 @@ AnfNodePtr PynativeExecutor::MakeCNode(const OpExecInfoPtr &op_exec_info, const
|
|
|
|
|
|
|
|
|
|
AnfNodePtr PynativeExecutor::GetObjNode(const py::object &obj) {
|
|
|
|
|
auto &out = graph_info_map_[curr_g_].obj_node_map[GetId(obj)];
|
|
|
|
|
if (out.second == -1) {
|
|
|
|
|
if (out.second.size() == 1 && out.second[0] == -1) {
|
|
|
|
|
return out.first;
|
|
|
|
|
}
|
|
|
|
|
std::vector<AnfNodePtr> tuple_get_item_inputs{NewValueNode(prim::kPrimTupleGetItem), out.first,
|
|
|
|
|
NewValueNode(out.second)};
|
|
|
|
|
return curr_g_->NewCNode(tuple_get_item_inputs);
|
|
|
|
|
auto node = out.first;
|
|
|
|
|
MS_LOG(DEBUG) << "output size " << out.second.size() << node->DebugString();
|
|
|
|
|
for (auto &idx : out.second) {
|
|
|
|
|
std::vector<AnfNodePtr> tuple_get_item_inputs{NewValueNode(prim::kPrimTupleGetItem), node, NewValueNode(idx)};
|
|
|
|
|
node = curr_g_->NewCNode(tuple_get_item_inputs);
|
|
|
|
|
}
|
|
|
|
|
MS_LOG(DEBUG) << "GetObjNode output" << node->DebugString(6);
|
|
|
|
|
return node;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
py::tuple RunOp(const OpExecInfoPtr &op_exec_info, const py::args &args) {
|
|
|
|
@ -594,8 +600,11 @@ py::tuple RunOp(const OpExecInfoPtr &op_exec_info, const py::args &args) {
|
|
|
|
|
|
|
|
|
|
py::tuple RunOp(const py::args &args) {
|
|
|
|
|
MS_LOG(DEBUG) << "RunOp start" << args.size();
|
|
|
|
|
OpExecInfoPtr op_exec_info = GenerateOpExecInfo(args);
|
|
|
|
|
py::list args_input = args[PY_INPUTS];
|
|
|
|
|
|
|
|
|
|
OpExecInfoPtr op_exec_info = GenerateOpExecInfo(args, &args_input);
|
|
|
|
|
MS_EXCEPTION_IF_NULL(op_exec_info);
|
|
|
|
|
|
|
|
|
|
if (op_exec_info->abstract != nullptr) {
|
|
|
|
|
py::dict output = abstract::ConvertAbstractToPython(op_exec_info->abstract);
|
|
|
|
|
if (!output["value"].is_none()) {
|
|
|
|
@ -609,7 +618,7 @@ py::tuple RunOp(const py::args &args) {
|
|
|
|
|
return value_ret;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return RunOp(op_exec_info, args);
|
|
|
|
|
return RunOp(op_exec_info, args_input);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void ClearPyNativeSession() { session = nullptr; }
|
|
|
|
@ -646,6 +655,14 @@ void PynativeExecutor::NewGraph(const py::object &cell, const py::args &args) {
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
AnfNodePtr PynativeExecutor::MakeValueNode(const py::object &obj, const std::string &obj_id) {
|
|
|
|
|
ValuePtr converted_ret = nullptr;
|
|
|
|
|
parse::ConvertData(obj, &converted_ret);
|
|
|
|
|
auto node = NewValueNode(converted_ret);
|
|
|
|
|
set_obj_node_map(curr_g_, obj_id, node);
|
|
|
|
|
return node;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
AnfNodePtr PynativeExecutor::GetInput(const py::object &obj, const py::object &op_mask) {
|
|
|
|
|
AnfNodePtr node = nullptr;
|
|
|
|
|
std::string obj_id = GetId(obj);
|
|
|
|
@ -683,10 +700,16 @@ AnfNodePtr PynativeExecutor::GetInput(const py::object &obj, const py::object &o
|
|
|
|
|
} else if (py::isinstance<py::tuple>(obj)) {
|
|
|
|
|
// out = op((x, y))
|
|
|
|
|
// out = cell((x, y))
|
|
|
|
|
auto tuple = obj.cast<py::tuple>();
|
|
|
|
|
|
|
|
|
|
// cell((1,2)): support not mix (scalar, tensor)
|
|
|
|
|
if (tuple.size() > 0 && !py::isinstance<tensor::Tensor>(tuple[0])) {
|
|
|
|
|
return MakeValueNode(obj, obj_id);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
std::vector<AnfNodePtr> args;
|
|
|
|
|
args.push_back(NewValueNode(prim::kPrimMakeTuple));
|
|
|
|
|
|
|
|
|
|
auto tuple = obj.cast<py::tuple>();
|
|
|
|
|
auto tuple_size = static_cast<int>(tuple.size());
|
|
|
|
|
for (int i = 0; i < tuple_size; i++) {
|
|
|
|
|
args.push_back(GetInput(tuple[i], py::object()));
|
|
|
|
@ -695,17 +718,26 @@ AnfNodePtr PynativeExecutor::GetInput(const py::object &obj, const py::object &o
|
|
|
|
|
set_obj_node_map(curr_g_, GetId(obj), cnode);
|
|
|
|
|
node = cnode;
|
|
|
|
|
} else {
|
|
|
|
|
// out = op(x, 1)
|
|
|
|
|
ValuePtr converted_ret = nullptr;
|
|
|
|
|
parse::ConvertData(obj, &converted_ret);
|
|
|
|
|
node = NewValueNode(converted_ret);
|
|
|
|
|
set_obj_node_map(curr_g_, obj_id, node);
|
|
|
|
|
node = MakeValueNode(obj, obj_id);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
MS_LOG(DEBUG) << "Now getinput " << py::str(obj) << " node " << node->ToString();
|
|
|
|
|
MS_LOG(DEBUG) << "Now getinput node " << node->ToString() << obj_id;
|
|
|
|
|
return node;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// for output[0][1] need getitem multi
|
|
|
|
|
void PynativeExecutor::SetTupleOutput(const py::object &obj, const AnfNodePtr &cnode, std::vector<int> idx) {
|
|
|
|
|
if (py::isinstance<py::tuple>(obj)) {
|
|
|
|
|
auto tuple = obj.cast<py::tuple>();
|
|
|
|
|
for (int i = 0; i < static_cast<int>(tuple.size()); i++) {
|
|
|
|
|
std::vector<int> tmp = idx;
|
|
|
|
|
tmp.push_back(i);
|
|
|
|
|
set_obj_node_map(curr_g_, GetId(tuple[i]), cnode, tmp);
|
|
|
|
|
SetTupleOutput(tuple[i], cnode, tmp);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void PynativeExecutor::Pushp() { graph_p_.push(curr_g_); }
|
|
|
|
|
|
|
|
|
|
void PynativeExecutor::Popp() {
|
|
|
|
@ -737,6 +769,7 @@ void PynativeExecutor::EndGraph(const py::object &cell, const py::object &out, c
|
|
|
|
|
for (int i = 0; i < tuple_size; i++) {
|
|
|
|
|
args.push_back(GetInput(tuple[i], py::object()));
|
|
|
|
|
set_obj_node_map(curr_g_, GetId(tuple[i]), cnode, i);
|
|
|
|
|
SetTupleOutput(tuple[i], cnode, std::vector<int>{i});
|
|
|
|
|
}
|
|
|
|
|
cnode->set_inputs(args);
|
|
|
|
|
set_obj_node_map(curr_g_, out_id, cnode);
|
|
|
|
@ -784,6 +817,7 @@ void PynativeExecutor::EndGraphByOutId(const std::string &out_id, const py::obje
|
|
|
|
|
auto out_size = static_cast<int>(out_list.size());
|
|
|
|
|
for (int i = 0; i < out_size; i++) {
|
|
|
|
|
set_obj_node_map(curr_g_, GetId(out_list[i]), out_cnode, i);
|
|
|
|
|
SetTupleOutput(out_list[i], out_cnode, std::vector<int>{i});
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
set_obj_node_map(curr_g_, GetId(out), out_cnode);
|
|
|
|
@ -878,6 +912,7 @@ void PynativeExecutor::GradNet(const GradOperationPtr &grad, const py::object &c
|
|
|
|
|
MS_EXCEPTION_IF_NULL(resource_->func_graph());
|
|
|
|
|
auto g = GradGraph(resource_->func_graph(), grad, w_args, size);
|
|
|
|
|
resource_->set_func_graph(g);
|
|
|
|
|
resource_->manager()->KeepRoots({g});
|
|
|
|
|
|
|
|
|
|
// get the parameters items and add the value to args_spec
|
|
|
|
|
abstract::AbstractBasePtrList args_spec = GetArgsSpec(args);
|
|
|
|
|