|
|
|
@ -81,7 +81,7 @@ class Optimizer(Cell):
|
|
|
|
|
raise ValueError("Optimizer got an empty parameter list.")
|
|
|
|
|
|
|
|
|
|
if not isinstance(parameters[0], (dict, Parameter)):
|
|
|
|
|
raise ValueError("Only a list of Parameter or dict can be supported.")
|
|
|
|
|
raise TypeError("Only a list of Parameter or dict can be supported.")
|
|
|
|
|
|
|
|
|
|
if isinstance(loss_scale, int):
|
|
|
|
|
loss_scale = float(loss_scale)
|
|
|
|
@ -258,9 +258,9 @@ class Optimizer(Cell):
|
|
|
|
|
|
|
|
|
|
for param in group_param['params']:
|
|
|
|
|
validator.check_value_type("parameter", param, [Parameter], self.cls_name)
|
|
|
|
|
if param in params_store:
|
|
|
|
|
if param.name in params_store:
|
|
|
|
|
raise RuntimeError(f"The {param.name} parameter has appeared in parameter groups.")
|
|
|
|
|
params_store.append(param)
|
|
|
|
|
params_store.append(param.name)
|
|
|
|
|
self.group_lr.append(Parameter(lr, name="lr_" + param.name))
|
|
|
|
|
self.group_weight_decay.append(weight_decay_)
|
|
|
|
|
|
|
|
|
@ -298,18 +298,22 @@ class Optimizer(Cell):
|
|
|
|
|
Parameter, single `Parameter` or `list[Parameter]` according to the input type.
|
|
|
|
|
"""
|
|
|
|
|
if not isinstance(param, (Parameter, list)):
|
|
|
|
|
raise TypeError(f"The 'param' only support 'Parameter' or 'list' type.")
|
|
|
|
|
raise TypeError(f"The parameter only support 'Parameter' or 'list' type.")
|
|
|
|
|
|
|
|
|
|
if isinstance(param, list):
|
|
|
|
|
lr = []
|
|
|
|
|
for p in param:
|
|
|
|
|
validator.check_value_type("parameter", p, [Parameter], self.cls_name)
|
|
|
|
|
if p not in self.parameters:
|
|
|
|
|
raise ValueError(f"The parameter {p.name} is not in optimizer.")
|
|
|
|
|
if self.is_group_lr:
|
|
|
|
|
index = self.parameters.index(p)
|
|
|
|
|
lr.append(self.learning_rate[index])
|
|
|
|
|
else:
|
|
|
|
|
lr.append(self.learning_rate)
|
|
|
|
|
else:
|
|
|
|
|
if param not in self.parameters:
|
|
|
|
|
raise ValueError(f"The parameter {param.name} is not in optimizer.")
|
|
|
|
|
if self.is_group_lr:
|
|
|
|
|
index = self.parameters.index(param)
|
|
|
|
|
lr = self.learning_rate[index]
|
|
|
|
|