add SubOffset cpu op

pull/9345/head
fangzehua 4 years ago
parent a7361e8524
commit 648692d46f

@ -0,0 +1,78 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/cpu/sub_and_filter_cpu_kernel.h"
#include <string>
#include "runtime/device/cpu/cpu_device_address.h"
namespace mindspore {
namespace kernel {
void SubAndFilterCPUKernel::InitKernel(const CNodePtr &kernel_node) {
MS_EXCEPTION_IF_NULL(kernel_node);
node_ = kernel_node;
input_x_dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0);
}
bool SubAndFilterCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> & /*workspace*/,
const std::vector<kernel::AddressPtr> &outputs) {
if (input_x_dtype_ == kNumberTypeInt32) {
LaunchKernel<int>(inputs, outputs);
} else if (input_x_dtype_ == kNumberTypeInt64) {
LaunchKernel<int64_t>(inputs, outputs);
} else {
MS_LOG(ERROR) << "input x dtype only support int32, int64";
return false;
}
return true;
}
template <typename T>
void SubAndFilterCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> &outputs) {
auto indices_shape = AnfAlgo::GetPrevNodeOutputInferShape(node_, 0);
batch_size_ = 1;
for (size_t i = 0; i < indices_shape.size(); ++i) {
batch_size_ *= indices_shape[i];
}
MS_LOG(INFO) << "SubAndFilter batch_size:" << batch_size_;
T *input_x = reinterpret_cast<T *>(inputs[0]->addr);
T max_num = *reinterpret_cast<T *>(inputs[1]->addr);
T offset = *reinterpret_cast<T *>(inputs[2]->addr);
T *filter_res = reinterpret_cast<T *>(outputs[0]->addr);
T *filter_idx = reinterpret_cast<T *>(outputs[1]->addr);
size_t count = 0;
for (size_t i = 0; i < batch_size_; ++i) {
T temp = input_x[i] - offset;
if (temp < 0 || temp >= max_num) continue;
filter_res[count] = temp;
filter_idx[count] = i;
count++;
}
MS_LOG(INFO) << "SubAndFilter output count is " << count;
std::vector<size_t> out_shape;
out_shape.emplace_back(count);
std::vector<TypeId> dtypes;
for (size_t i = 0; i < AnfAlgo::GetOutputTensorNum(node_); i++) {
dtypes.push_back(AnfAlgo::GetOutputInferDataType(node_, i));
}
AnfAlgo::SetOutputInferTypeAndShape(dtypes, {out_shape, out_shape}, node_.get());
}
} // namespace kernel
} // namespace mindspore

@ -0,0 +1,66 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SUB_AND_FILTER_CPU_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SUB_AND_FILTER_CPU_KERNEL_H_
#include <vector>
#include <memory>
#include <unordered_map>
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
namespace mindspore {
namespace kernel {
class SubAndFilterCPUKernel : public CPUKernel {
public:
SubAndFilterCPUKernel() = default;
~SubAndFilterCPUKernel() override = default;
void InitKernel(const CNodePtr &kernel_node) override;
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override;
template <typename T>
void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<kernel::AddressPtr> &outputs);
private:
size_t batch_size_{1};
TypeId input_x_dtype_{kTypeUnknown};
CNodePtr node_ = nullptr;
};
MS_REG_CPU_KERNEL(SubAndFilter,
KernelAttr()
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt32)
.AddOutputAttr(kNumberTypeInt32)
.AddOutputAttr(kNumberTypeInt32),
SubAndFilterCPUKernel);
MS_REG_CPU_KERNEL(SubAndFilter,
KernelAttr()
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeInt64)
.AddOutputAttr(kNumberTypeInt64)
.AddOutputAttr(kNumberTypeInt64),
SubAndFilterCPUKernel);
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SUB_AND_FILTER_CPU_KERNEL_H_

@ -207,6 +207,8 @@ AbstractBasePtr InferImplDiv(const AnalysisEnginePtr &, const PrimitivePtr &prim
const AbstractBasePtrList &args_spec_list);
AbstractBasePtr InferImplRealDiv(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
const AbstractBasePtrList &args_spec_list);
AbstractBasePtr InferImplSubAndFilter(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
const AbstractBasePtrList &args_spec_list);
AbstractBasePtr InferImplMapCacheIdx(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
const AbstractBasePtrList &args_spec_list);
AbstractBasePtr InferImplCacheSwapTable(const AnalysisEnginePtr &, const PrimitivePtr &primitive,

@ -462,6 +462,34 @@ AbstractBasePtr InferImplUpdateCache(const AnalysisEnginePtr &, const PrimitiveP
return ret;
}
AbstractBasePtr InferImplSubAndFilter(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
const AbstractBasePtrList &args_spec_list) {
const std::string op_name = primitive->name();
auto input_x = CheckArg<AbstractTensor>(op_name, args_spec_list, 0);
auto input_x_shp = input_x->shape();
MS_EXCEPTION_IF_NULL(input_x);
MS_EXCEPTION_IF_NULL(input_x_shp);
ShapeVector shape;
ShapeVector min_shape;
ShapeVector max_shape;
if (!input_x_shp->max_shape().empty()) {
max_shape = input_x_shp->max_shape();
} else {
max_shape = input_x_shp->shape();
}
for (size_t i = 0; i < max_shape.size(); i++) {
shape.emplace_back(Shape::SHP_ANY);
min_shape.emplace_back(1);
}
auto filter_res =
std::make_shared<AbstractTensor>(input_x->element(), std::make_shared<Shape>(shape, min_shape, max_shape));
auto filter_idx =
std::make_shared<AbstractTensor>(input_x->element(), std::make_shared<Shape>(shape, min_shape, max_shape));
AbstractBasePtrList elements = {filter_res, filter_idx};
return std::make_shared<AbstractTuple>(elements);
}
AbstractBasePtr InferImplDiv(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
const AbstractBasePtrList &args_spec_list) {
const std::string op_name = primitive->name();

@ -60,6 +60,7 @@ PrimitiveEvalImplMap &GetPrimitiveToEvalImplMap() {
{prim::kPrimUnsortedSegmentSum, {InferImplUnsortedSegmentSum, true}},
{prim::kPrimUnsortedSegmentMax, {InferImplUnsortedSegmentMax, true}},
{prim::kPrimScatterAdd, {InferImplScatterAdd, true}},
{prim::kPrimSubAndFilter, {InferImplSubAndFilter, true}},
{prim::kPrimScatterUpdate, {InferImplScatterUpdate, true}},
{prim::kPrimMapCacheIdx, {InferImplMapCacheIdx, true}},
{prim::kPrimCacheSwapTable, {InferImplCacheSwapTable, true}},

@ -98,6 +98,7 @@ inline const PrimitivePtr kPrimUnsortedSegmentSum = std::make_shared<Primitive>(
inline const PrimitivePtr kPrimUnsortedSegmentMin = std::make_shared<Primitive>("UnsortedSegmentMin");
inline const PrimitivePtr kPrimConcatOffset = std::make_shared<Primitive>("ConcatOffset");
inline const PrimitivePtr kPrimReshape = std::make_shared<Primitive>("Reshape");
inline const PrimitivePtr kPrimSubAndFilter = std::make_shared<Primitive>("SubAndFilter");
inline const PrimitivePtr kPrimMapCacheIdx = std::make_shared<Primitive>("MapCacheIdx");
inline const PrimitivePtr kPrimUpdateCache = std::make_shared<Primitive>("UpdateCache");
inline const PrimitivePtr kPrimCacheSwapTable = std::make_shared<Primitive>("CacheSwapTable");

@ -90,7 +90,7 @@ from ._thor_ops import (CusBatchMatMul, CusCholeskyTrsm, CusFusedAbsMax1, CusImg
CusMatMulCubeDenseRight,
CusMatMulCubeFraczLeftCast, Im2Col, UpdateThorGradient, CholeskyTrsm, DetTriangle)
from .sparse_ops import SparseToDense
from ._cache_ops import CacheSwapHashmap, SearchCacheIdx, CacheSwapTable, UpdateCache, MapCacheIdx
from ._cache_ops import CacheSwapHashmap, SearchCacheIdx, CacheSwapTable, UpdateCache, MapCacheIdx, SubAndFilter
__all__ = [
'Unique',

@ -56,6 +56,51 @@ class UpdateCache(PrimitiveWithCheck):
return input_x_dtype
class SubAndFilter(PrimitiveWithCheck):
"""
Dynamic kernel, sub an offset and
return the elements which in range [0, max_num).
Inputs:
- **input_x** (Tensor) - Input tensor.
- **max_num** (Int) - The max value of element that after sub `offset`.
- **offset** (int) - Specifies the offset value of this `input_x`.
Outputs:
tuple(Tensor), tuple of 2 tensors, filter_res and filter_idx.
- **filter_res** (Tensor) - The result that `input_x` minus `offset`,
and return which in the range [0, max_num).
- **filter_idx** (Tensor) - A tensor containing indices of elements in the input
coressponding to the output tensor.
Supported Platforms:
`CPU`
Examples:
>>> x = Tensor(np.array([1, 3, 5, 8, 9, 16]), mindspore.int32)
>>> max_num = 10
>>> offset = 5
>>> output = ops.SubAndFilter()(x, max_num, offset)
>>> print(output)
(Tensor(shape=[3], dtype=Int32, value= [0, 3, 4]),
Tensor(shape=[3], dtype=Int32, value= [2, 3, 4]))
"""
@prim_attr_register
def __init__(self):
"""init SubAndFilter"""
self.init_prim_io_names(inputs=['input_x', 'max_num', 'offset'],
outputs=['sub_res', 'sub_idx'])
def check_shape(self, input_x_shape, max_num_shape, offset_shape):
return (-1, -1)
def check_dtype(self, input_x_dtype, max_num_dtype, offset_dtype):
validator.check_tensor_dtype_valid(
"input_x", input_x_dtype, mstype.int_type, self.name)
return input_x_dtype
class SearchCacheIdx(PrimitiveWithInfer):
"""
Search the keys of a hashmap, and return the values.
@ -254,7 +299,8 @@ class MapCacheIdx(PrimitiveWithCheck):
hashmap_dtype = hashmap['dtype']
indices_dtype = indices['dtype']
args = {"hashmap": hashmap_dtype, "indices": indices_dtype}
validator.check_tensor_type_same(args, mstype.int_type, self.name)
validator.check_tensors_dtypes_same_and_valid(
args, mstype.int_type, self.name)
out_dtype = (hashmap_dtype, hashmap_dtype,
hashmap_dtype, hashmap_dtype)

@ -0,0 +1,48 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
import mindspore.common.dtype as mstype
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.sub_and_filter = P.SubAndFilter()
self.offset = 5
self.max_num = 10
def construct(self, x):
return self.sub_and_filter(x, self.max_num, self.offset)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_sub_and_filter():
x = Tensor(np.array([1, 3, 5, 9, 6, 15]), mstype.int32)
sub_and_filter = Net()
output = sub_and_filter(x)
expect1 = np.array([0, 4, 1])
expect2 = np.array([2, 3, 4])
assert (output[0].asnumpy() == expect1).all()
assert (output[1].asnumpy() == expect2).all()
Loading…
Cancel
Save