|
|
|
@ -252,9 +252,9 @@ def test_random_crop_with_bbox_op_bad_padding():
|
|
|
|
|
try:
|
|
|
|
|
test_op = c_vision.RandomCropWithBBox([512, 512], padding=-1)
|
|
|
|
|
|
|
|
|
|
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
|
|
|
|
|
output_columns=["image", "annotation"],
|
|
|
|
|
columns_order=["image", "annotation"],
|
|
|
|
|
dataVoc2 = dataVoc2.map(input_columns=["image", "bbox"],
|
|
|
|
|
output_columns=["image", "bbox"],
|
|
|
|
|
columns_order=["image", "bbox"],
|
|
|
|
|
operations=[test_op])
|
|
|
|
|
|
|
|
|
|
for _ in dataVoc2.create_dict_iterator():
|
|
|
|
@ -266,9 +266,9 @@ def test_random_crop_with_bbox_op_bad_padding():
|
|
|
|
|
try:
|
|
|
|
|
test_op = c_vision.RandomCropWithBBox([512, 512], padding=[16777216, 16777216, 16777216, 16777216])
|
|
|
|
|
|
|
|
|
|
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
|
|
|
|
|
output_columns=["image", "annotation"],
|
|
|
|
|
columns_order=["image", "annotation"],
|
|
|
|
|
dataVoc2 = dataVoc2.map(input_columns=["image", "bbox"],
|
|
|
|
|
output_columns=["image", "bbox"],
|
|
|
|
|
columns_order=["image", "bbox"],
|
|
|
|
|
operations=[test_op])
|
|
|
|
|
|
|
|
|
|
for _ in dataVoc2.create_dict_iterator():
|
|
|
|
|