!3842 Add new hms ops of crop with type of int8
Merge pull request !3842 from liuwenhao/masterpull/3842/MERGE
commit
67005d42c8
@ -0,0 +1,108 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "src/runtime/kernel/arm/base/crop_base.h"
|
||||
#include <vector>
|
||||
#include "src/runtime/kernel/arm/int8/crop_int8.h"
|
||||
#include "src/runtime/kernel/arm/fp32/crop.h"
|
||||
#include "schema/model_generated.h"
|
||||
#include "src/kernel_factory.h"
|
||||
#include "include/errorcode.h"
|
||||
#include "include/context.h"
|
||||
|
||||
using mindspore::lite::KernelRegistrar;
|
||||
using mindspore::lite::RET_ERROR;
|
||||
using mindspore::lite::RET_OK;
|
||||
using mindspore::schema::PrimitiveType_Crop;
|
||||
|
||||
namespace mindspore::kernel {
|
||||
int CropBaseCPUKernel::Init() { return RET_OK; }
|
||||
|
||||
kernel::LiteKernel *CpuCropInt8KernelCreator(const std::vector<lite::tensor::Tensor *> &inputs,
|
||||
const std::vector<lite::tensor::Tensor *> &outputs,
|
||||
OpParameter *opParameter, const Context *ctx,
|
||||
const kernel::KernelKey &desc) {
|
||||
if (opParameter == nullptr) {
|
||||
MS_LOG(ERROR) << "Input opParameter is nullptr!";
|
||||
return nullptr;
|
||||
}
|
||||
MS_ASSERT(desc.type == schema::PrimitiveType_Crop);
|
||||
auto *kernel = new (std::nothrow) CropInt8CPUKernel(opParameter, inputs, outputs, ctx);
|
||||
if (kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "new CropCPUKernel fail!";
|
||||
return nullptr;
|
||||
}
|
||||
auto ret = kernel->Init();
|
||||
if (ret != RET_OK) {
|
||||
delete kernel;
|
||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
||||
return nullptr;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
kernel::LiteKernel *CpuCropInt32KernelCreator(const std::vector<lite::tensor::Tensor *> &inputs,
|
||||
const std::vector<lite::tensor::Tensor *> &outputs,
|
||||
OpParameter *opParameter, const Context *ctx,
|
||||
const kernel::KernelKey &desc) {
|
||||
if (opParameter == nullptr) {
|
||||
MS_LOG(ERROR) << "Input opParameter is nullptr!";
|
||||
return nullptr;
|
||||
}
|
||||
MS_ASSERT(desc.type == schema::PrimitiveType_Crop);
|
||||
auto *kernel = new (std::nothrow) CropCPUKernel(opParameter, inputs, outputs, ctx);
|
||||
if (kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "new CropCPUKernel fail!";
|
||||
return nullptr;
|
||||
}
|
||||
auto ret = kernel->Init();
|
||||
if (ret != RET_OK) {
|
||||
delete kernel;
|
||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
||||
return nullptr;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
kernel::LiteKernel *CpuCropFp32KernelCreator(const std::vector<lite::tensor::Tensor *> &inputs,
|
||||
const std::vector<lite::tensor::Tensor *> &outputs,
|
||||
OpParameter *opParameter, const Context *ctx,
|
||||
const kernel::KernelKey &desc) {
|
||||
if (opParameter == nullptr) {
|
||||
MS_LOG(ERROR) << "Input opParameter is nullptr!";
|
||||
return nullptr;
|
||||
}
|
||||
MS_ASSERT(desc.type == schema::PrimitiveType_Crop);
|
||||
auto *kernel = new (std::nothrow) CropCPUKernel(opParameter, inputs, outputs, ctx);
|
||||
if (kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "new CropCPUKernel fail!";
|
||||
return nullptr;
|
||||
}
|
||||
auto ret = kernel->Init();
|
||||
if (ret != RET_OK) {
|
||||
delete kernel;
|
||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
||||
return nullptr;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_Crop, CpuCropInt8KernelCreator)
|
||||
REG_KERNEL(kCPU, kNumberTypeInt32, PrimitiveType_Crop, CpuCropInt32KernelCreator)
|
||||
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Crop, CpuCropFp32KernelCreator)
|
||||
} // namespace mindspore::kernel
|
@ -0,0 +1,46 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_CROP_BASE_H_
|
||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_CROP_BASE_H_
|
||||
|
||||
#include <vector>
|
||||
#include "src/lite_kernel.h"
|
||||
#include "src/runtime/kernel/arm/opclib/crop_parameter.h"
|
||||
|
||||
using mindspore::lite::Context;
|
||||
|
||||
namespace mindspore::kernel {
|
||||
class CropBaseCPUKernel : public LiteKernel {
|
||||
public:
|
||||
CropBaseCPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
|
||||
const std::vector<lite::tensor::Tensor *> &outputs, const Context *ctx)
|
||||
: LiteKernel(parameter, inputs, outputs), ctx_(ctx), thread_count_(ctx->threadNum) {
|
||||
opParameter->thread_num_ = ctx->threadNum;
|
||||
}
|
||||
~CropBaseCPUKernel() = default;
|
||||
|
||||
int Init() override;
|
||||
int ReSize() override { return 0; }
|
||||
int Run() override { return 0; }
|
||||
|
||||
protected:
|
||||
int thread_count_;
|
||||
const Context *ctx_;
|
||||
};
|
||||
} // namespace mindspore::kernel
|
||||
|
||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_CROP_BASE_H_
|
@ -0,0 +1,96 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "src/runtime/kernel/arm/int8/crop_int8.h"
|
||||
#include <limits>
|
||||
#include "src/runtime/kernel/arm/opclib/int8/crop_int8.h"
|
||||
#include "include/errorcode.h"
|
||||
#include "src/runtime/runtime_api.h"
|
||||
|
||||
using mindspore::kernel::KERNEL_ARCH::kCPU;
|
||||
using mindspore::lite::RET_ERROR;
|
||||
using mindspore::lite::RET_OK;
|
||||
|
||||
namespace mindspore::kernel {
|
||||
|
||||
int CropInt8CPUKernel::Init() {
|
||||
CropBaseCPUKernel::Init();
|
||||
auto *input_tensor = inputs_.at(kInputIndex);
|
||||
auto in_quant_args = input_tensor->GetQuantParams();
|
||||
crop_para_->quant_arg.in_args_.scale_ = in_quant_args.front().scale;
|
||||
crop_para_->quant_arg.in_args_.zp_ = in_quant_args.front().zeroPoint;
|
||||
auto input_dim = input_tensor->shape().size();
|
||||
MS_ASSERT(input_dim <= CROP_OFFSET_MAX_SIZE);
|
||||
crop_para_->input_dim_ = input_dim;
|
||||
|
||||
auto *out_tensor = outputs_.at(kOutputIndex);
|
||||
auto out_quant_args = out_tensor->GetQuantParams();
|
||||
crop_para_->quant_arg.out_args_.scale_ = out_quant_args.front().scale;
|
||||
crop_para_->quant_arg.out_args_.zp_ = out_quant_args.front().zeroPoint;
|
||||
|
||||
crop_para_->in_shape_ = input_tensor->shape().data();
|
||||
crop_para_->out_shape_ = out_tensor->shape().data();
|
||||
|
||||
crop_para_->quant_arg.output_activation_max_ = std::numeric_limits<int8_t>::max();
|
||||
crop_para_->quant_arg.output_activation_min_ = std::numeric_limits<int8_t>::min();
|
||||
|
||||
PadOffset(input_dim, crop_para_);
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int CropInt8CPUKernel::ReSize() { return 0; }
|
||||
|
||||
int CropInt8CPUKernel::Run() {
|
||||
auto ret = LiteBackendParallelLaunch(CropInt8Run, this, thread_count_);
|
||||
return ret;
|
||||
}
|
||||
|
||||
void PadOffset(int input_dim, CropParameter *crop_para) {
|
||||
auto axis = crop_para->axis_;
|
||||
auto offsets_size = crop_para->offset_size_;
|
||||
MS_ASSERT(axis <= input_dim);
|
||||
if (offsets_size > 1) {
|
||||
MS_ASSERT(axis + offsets_size == input_dim);
|
||||
}
|
||||
for (int i = 0; i < input_dim; i++) {
|
||||
int crop_offset = 0;
|
||||
if (i >= axis) {
|
||||
if (offsets_size == 1) {
|
||||
crop_offset = crop_para->offset_[0];
|
||||
} else if (offsets_size > 1) {
|
||||
crop_offset = crop_para->offset_[i - axis];
|
||||
}
|
||||
}
|
||||
crop_para->in_offset_[i] = crop_offset;
|
||||
}
|
||||
}
|
||||
|
||||
int CropInt8Run(int task_id, LiteParallelGroupEnv *penv, void *cdata) {
|
||||
auto crop = reinterpret_cast<CropInt8CPUKernel *>(cdata);
|
||||
crop->DoExecute(task_id);
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int CropInt8CPUKernel::DoExecute(int task_id) {
|
||||
auto input_tensor = inputs_.at(kInputIndex);
|
||||
auto out_tensor = outputs_.at(kOutputIndex);
|
||||
int8_t *input_data = reinterpret_cast<int8_t *>(input_tensor->Data());
|
||||
int8_t *output_data = reinterpret_cast<int8_t *>(out_tensor->Data());
|
||||
Crop(input_data, output_data, task_id, crop_para_);
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
} // namespace mindspore::kernel
|
@ -0,0 +1,52 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_CROP_INT8_H_
|
||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_CROP_INT8_H_
|
||||
|
||||
#include <vector>
|
||||
#include "src/lite_kernel.h"
|
||||
#include "include/context.h"
|
||||
#include "src/runtime/kernel/arm/base/crop_base.h"
|
||||
#include "src/runtime/runtime_api.h"
|
||||
|
||||
using mindspore::lite::Context;
|
||||
|
||||
namespace mindspore::kernel {
|
||||
class CropInt8CPUKernel : public CropBaseCPUKernel {
|
||||
public:
|
||||
CropInt8CPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
|
||||
const std::vector<lite::tensor::Tensor *> &outputs, const Context *ctx)
|
||||
: CropBaseCPUKernel(parameter, inputs, outputs, ctx) {
|
||||
crop_para_ = reinterpret_cast<CropParameter *>(opParameter);
|
||||
crop_para_->thread_count_ = opParameter->thread_num_;
|
||||
}
|
||||
~CropInt8CPUKernel() = default;
|
||||
|
||||
int Init() override;
|
||||
int ReSize() override;
|
||||
int Run() override;
|
||||
int DoExecute(int tId);
|
||||
|
||||
private:
|
||||
CropParameter *crop_para_;
|
||||
};
|
||||
|
||||
int CropInt8Run(int task_id, LiteParallelGroupEnv *penv, void *cdata);
|
||||
void PadOffset(int input_dim, CropParameter *crop_para);
|
||||
} // namespace mindspore::kernel
|
||||
|
||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_CROP_INT8_H_
|
@ -0,0 +1,37 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_CROP_PARAMETER_H_
|
||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_CROP_PARAMETER_H_
|
||||
#include "src/runtime/kernel/arm/opclib/op_base.h"
|
||||
|
||||
#define CROP_OFFSET_MAX_SIZE 4
|
||||
|
||||
struct CropParameter {
|
||||
OpParameter op_parameter_;
|
||||
CropQuantArg quant_arg;
|
||||
int thread_count_;
|
||||
int thread_id_;
|
||||
int offset_size_;
|
||||
int64_t offset_[CROP_OFFSET_MAX_SIZE];
|
||||
int64_t in_offset_[CROP_OFFSET_MAX_SIZE];
|
||||
int64_t axis_;
|
||||
const int *in_shape_;
|
||||
const int *out_shape_;
|
||||
int input_dim_;
|
||||
};
|
||||
|
||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_CROP_PARAMETER_H_
|
@ -0,0 +1,222 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "src/runtime/kernel/arm/opclib/crop_parameter.h"
|
||||
#include "src/runtime/kernel/arm/opclib/int8/crop_int8.h"
|
||||
#include <string.h>
|
||||
|
||||
void Crop(const int8_t *input, int8_t *output, int task_id, CropParameter *para) {
|
||||
auto input_dim = para->input_dim_;
|
||||
switch (input_dim) {
|
||||
case 1:
|
||||
Crop1D(input, output, task_id, para);
|
||||
break;
|
||||
case 2:
|
||||
Crop2D(input, output, task_id, para);
|
||||
break;
|
||||
case 3:
|
||||
Crop3D(input, output, task_id, para);
|
||||
break;
|
||||
case 4:
|
||||
Crop4D(input, output, task_id, para);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void Crop1D(const int8_t *input, int8_t *output, int task_id, CropParameter *para) {
|
||||
const int out_batch = para->out_shape_[0];
|
||||
const int thread_count = para->thread_count_;
|
||||
int64_t task_id_stride = thread_count > 1 ? UP_DIV(out_batch, thread_count) : out_batch;
|
||||
|
||||
float in_scale = para->quant_arg.in_args_.scale_;
|
||||
int32_t in_zp = para->quant_arg.in_args_.zp_;
|
||||
float out_scale = para->quant_arg.out_args_.scale_;
|
||||
int32_t out_zp = para->quant_arg.out_args_.zp_;
|
||||
float scale = in_scale / out_scale;
|
||||
float bias = -in_zp * scale;
|
||||
|
||||
auto n = task_id * task_id_stride;
|
||||
if (n >= out_batch) {
|
||||
return;
|
||||
}
|
||||
const int8_t *in_ptr = input + n + para->in_offset_[0];
|
||||
int8_t *out_ptr = output + n;
|
||||
int64_t out_dist_stride = MSMIN(out_batch - task_id * task_id_stride, task_id_stride);
|
||||
if (in_scale == out_scale && in_zp == out_zp) {
|
||||
memcpy(out_ptr, in_ptr, sizeof(int8_t) * out_dist_stride);
|
||||
} else {
|
||||
for (int i = 0; i < out_dist_stride; i++) {
|
||||
int32_t output_tmp = round(in_ptr[i] * scale + bias) + out_zp;
|
||||
if (output_tmp > para->quant_arg.output_activation_max_) {
|
||||
out_ptr[i] = para->quant_arg.output_activation_max_;
|
||||
} else if (output_tmp < para->quant_arg.output_activation_min_) {
|
||||
out_ptr[i] = para->quant_arg.output_activation_min_;
|
||||
} else {
|
||||
out_ptr[i] = static_cast<int8_t>(output_tmp);
|
||||
}
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
void Crop2D(const int8_t *input, int8_t *output, int task_id, CropParameter *para) {
|
||||
const int in_height = para->in_shape_[1];
|
||||
const int out_batch = para->out_shape_[0];
|
||||
const int out_height = para->out_shape_[1];
|
||||
const int thread_count = para->thread_count_;
|
||||
int64_t task_id_stride = thread_count > 1 ? UP_DIV(out_height, thread_count) : out_height;
|
||||
|
||||
float in_scale = para->quant_arg.in_args_.scale_;
|
||||
int32_t in_zp = para->quant_arg.in_args_.zp_;
|
||||
float out_scale = para->quant_arg.out_args_.scale_;
|
||||
int32_t out_zp = para->quant_arg.out_args_.zp_;
|
||||
float scale = in_scale / out_scale;
|
||||
float bias = -in_zp * scale;
|
||||
|
||||
for (int n = 0; n < out_batch; n++) {
|
||||
auto h = task_id * task_id_stride;
|
||||
if (h >= out_height) {
|
||||
return;
|
||||
}
|
||||
const int8_t *in_ptr = input + (n + para->in_offset_[0]) * in_height + h + para->in_offset_[1];
|
||||
int8_t *out_ptr = output + n * out_height + h;
|
||||
int64_t out_dist_stride = MSMIN(out_height - task_id * task_id_stride, task_id_stride);
|
||||
if (in_scale == out_scale && in_zp == out_zp) {
|
||||
memcpy(out_ptr, in_ptr, sizeof(int8_t) * out_dist_stride);
|
||||
} else {
|
||||
for (int i = 0; i < out_dist_stride; i++) {
|
||||
int32_t output_tmp = round(in_ptr[i] * scale + bias) + out_zp;
|
||||
if (output_tmp > para->quant_arg.output_activation_max_) {
|
||||
out_ptr[i] = para->quant_arg.output_activation_max_;
|
||||
} else if (output_tmp < para->quant_arg.output_activation_min_) {
|
||||
out_ptr[i] = para->quant_arg.output_activation_min_;
|
||||
} else {
|
||||
out_ptr[i] = static_cast<int8_t>(output_tmp);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
void Crop3D(const int8_t *input, int8_t *output, int task_id, CropParameter *para) {
|
||||
const int in_height = para->in_shape_[1];
|
||||
const int in_width = para->in_shape_[2];
|
||||
|
||||
const int out_batch = para->out_shape_[0];
|
||||
const int out_height = para->out_shape_[1];
|
||||
const int out_width = para->out_shape_[2];
|
||||
|
||||
const int in_stride_h = in_width;
|
||||
const int in_stride_n = in_stride_h * in_height;
|
||||
|
||||
const int out_stride_h = out_width;
|
||||
const int out_stride_n = out_stride_h * out_height;
|
||||
|
||||
float in_scale = para->quant_arg.in_args_.scale_;
|
||||
int32_t in_zp = para->quant_arg.in_args_.zp_;
|
||||
float out_scale = para->quant_arg.out_args_.scale_;
|
||||
int32_t out_zp = para->quant_arg.out_args_.zp_;
|
||||
float scale = in_scale / out_scale;
|
||||
float bias = -in_zp * scale;
|
||||
|
||||
const int thread_count = para->thread_count_;
|
||||
int64_t task_id_stride = thread_count > 1 ? UP_DIV(out_height, thread_count) : out_height;
|
||||
for (int n = 0; n < out_batch; n++) {
|
||||
for (int t = 0; t < task_id_stride; t++) {
|
||||
auto h = t + task_id * task_id_stride;
|
||||
if (h >= out_height) {
|
||||
break;
|
||||
}
|
||||
const int8_t *in_ptr =
|
||||
input + (n + para->in_offset_[0]) * in_stride_n + (h + para->in_offset_[1]) * in_stride_h + para->in_offset_[2];
|
||||
int8_t *out_ptr = output + n * out_stride_n + h * out_stride_h;
|
||||
if (in_scale == out_scale && in_zp == out_zp) {
|
||||
memcpy(out_ptr, in_ptr, sizeof(int8_t) * out_width);
|
||||
} else {
|
||||
for (int i = 0; i < out_width; i++) {
|
||||
int32_t output_tmp = round(in_ptr[i] * scale + bias) + out_zp;
|
||||
if (output_tmp > para->quant_arg.output_activation_max_) {
|
||||
out_ptr[i] = para->quant_arg.output_activation_max_;
|
||||
} else if (output_tmp < para->quant_arg.output_activation_min_) {
|
||||
out_ptr[i] = para->quant_arg.output_activation_min_;
|
||||
} else {
|
||||
out_ptr[i] = static_cast<int8_t>(output_tmp);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
void Crop4D(const int8_t *input, int8_t *output, int task_id, CropParameter *para) {
|
||||
const int in_height = para->in_shape_[1];
|
||||
const int in_width = para->in_shape_[2];
|
||||
const int in_channel = para->in_shape_[3];
|
||||
|
||||
const int out_batch = para->out_shape_[0];
|
||||
const int out_height = para->out_shape_[1];
|
||||
const int out_width = para->out_shape_[2];
|
||||
const int out_channel = para->out_shape_[3];
|
||||
|
||||
const int in_stride_w = in_channel;
|
||||
const int in_stride_h = in_channel * in_width;
|
||||
const int in_stride_n = in_stride_h * in_height;
|
||||
|
||||
const int out_stride_w = out_channel;
|
||||
const int out_stride_h = out_channel * out_width;
|
||||
const int out_stride_n = out_stride_h * out_height;
|
||||
|
||||
float in_scale = para->quant_arg.in_args_.scale_;
|
||||
int32_t in_zp = para->quant_arg.in_args_.zp_;
|
||||
float out_scale = para->quant_arg.out_args_.scale_;
|
||||
int32_t out_zp = para->quant_arg.out_args_.zp_;
|
||||
float scale = in_scale / out_scale;
|
||||
float bias = -in_zp * scale;
|
||||
|
||||
const int thread_count = para->thread_count_;
|
||||
int64_t task_id_stride = thread_count > 1 ? UP_DIV(out_height, thread_count) : out_height;
|
||||
for (int n = 0; n < out_batch; n++) {
|
||||
for (int t = 0; t < task_id_stride; t++) {
|
||||
auto h = t + task_id * task_id_stride;
|
||||
if (h >= out_height) {
|
||||
break;
|
||||
}
|
||||
for (int w = 0; w < out_width; w++) {
|
||||
const int8_t *in_ptr = input + (n + para->in_offset_[0]) * in_stride_n +
|
||||
(h + para->in_offset_[1]) * in_stride_h + (w + para->in_offset_[2]) * in_stride_w +
|
||||
para->in_offset_[3];
|
||||
int8_t *out_ptr = output + n * out_stride_n + h * out_stride_h + w * out_stride_w;
|
||||
if (in_scale == out_scale && in_zp == out_zp) {
|
||||
memcpy(out_ptr, in_ptr, sizeof(int8_t) * out_channel);
|
||||
} else {
|
||||
for (int i = 0; i < out_channel; i++) {
|
||||
int32_t output_tmp = round(in_ptr[i] * scale + bias) + out_zp;
|
||||
if (output_tmp > para->quant_arg.output_activation_max_) {
|
||||
out_ptr[i] = para->quant_arg.output_activation_max_;
|
||||
} else if (output_tmp < para->quant_arg.output_activation_min_) {
|
||||
out_ptr[i] = para->quant_arg.output_activation_min_;
|
||||
} else {
|
||||
out_ptr[i] = static_cast<int8_t>(output_tmp);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
@ -0,0 +1,28 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_INT8_CROP_INT8_H_
|
||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_INT8_CROP_INT8_H_
|
||||
#include "src/runtime/kernel/arm/opclib/op_base.h"
|
||||
#include "src/runtime/kernel/arm/opclib/crop_parameter.h"
|
||||
|
||||
void Crop(const int8_t *input, int8_t *output, int task_id, CropParameter *para);
|
||||
void Crop1D(const int8_t *input, int8_t *output, int task_id, CropParameter *para);
|
||||
void Crop2D(const int8_t *input, int8_t *output, int task_id, CropParameter *para);
|
||||
void Crop3D(const int8_t *input, int8_t *output, int task_id, CropParameter *para);
|
||||
void Crop4D(const int8_t *input, int8_t *output, int task_id, CropParameter *para);
|
||||
|
||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_INT8_CROP_INT8_H_
|
File diff suppressed because it is too large
Load Diff
Loading…
Reference in new issue