|
|
|
@ -14,9 +14,12 @@
|
|
|
|
|
# ============================================================================
|
|
|
|
|
"""pooling"""
|
|
|
|
|
from mindspore.ops import operations as P
|
|
|
|
|
from mindspore.ops import functional as F
|
|
|
|
|
from mindspore._checkparam import Validator as validator
|
|
|
|
|
from ... import context
|
|
|
|
|
from ..cell import Cell
|
|
|
|
|
from ..._checkparam import Rel
|
|
|
|
|
from ..._checkparam import ParamValidator
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class _PoolNd(Cell):
|
|
|
|
@ -208,3 +211,81 @@ class AvgPool2d(_PoolNd):
|
|
|
|
|
|
|
|
|
|
def construct(self, x):
|
|
|
|
|
return self.avg_pool(x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class AvgPool1d(_PoolNd):
|
|
|
|
|
r"""
|
|
|
|
|
Average pooling for temporal data.
|
|
|
|
|
|
|
|
|
|
Applies a 1D average pooling over an input Tensor which can be regarded as a composition of 1D input planes.
|
|
|
|
|
|
|
|
|
|
Typically the input is of shape :math:`(N_{in}, C_{in}, H_{in}, W_{in})`, AvgPool1d outputs
|
|
|
|
|
regional average in the :math:`(W_{in})`-dimension. Given kernel size
|
|
|
|
|
:math:`ks = w_{ker}` and stride :math:`s = s_0`, the operation is as follows.
|
|
|
|
|
|
|
|
|
|
.. math::
|
|
|
|
|
\text{output}(N_i, C_j, h_k, w) = \frac{1}{w_{ker}} \sum_{n=0}^{w_{ker}-1}
|
|
|
|
|
\text{input}(N_i, C_j, h_k, s_0 \times w + n)
|
|
|
|
|
|
|
|
|
|
Note:
|
|
|
|
|
pad_mode for training only supports "same" and "valid".
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
kernel_size (int): The size of kernel window used to take the average value, Default: 1.
|
|
|
|
|
stride (int): The distance of kernel moving, an int number that represents
|
|
|
|
|
the width of movement is strides, Default: 1.
|
|
|
|
|
pad_mode (str): The optional values for pad mode, is "same" or "valid", not case sensitive.
|
|
|
|
|
Default: "valid".
|
|
|
|
|
|
|
|
|
|
- same: Adopts the way of completion. Output height and width will be the same as
|
|
|
|
|
the input. Total number of padding will be calculated for horizontal and vertical
|
|
|
|
|
direction and evenly distributed to top and bottom, left and right if possible.
|
|
|
|
|
Otherwise, the last extra padding will be done from the bottom and the right side.
|
|
|
|
|
|
|
|
|
|
- valid: Adopts the way of discarding. The possibly largest height and width of output
|
|
|
|
|
will be return without padding. Extra pixels will be discarded.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Inputs:
|
|
|
|
|
- **input** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
|
|
|
|
|
|
|
|
|
|
Outputs:
|
|
|
|
|
Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`.
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
>>> pool = nn.AvgPool1d(kernel_size=3, strides=1)
|
|
|
|
|
>>> x = Tensor(np.random.randint(0, 10, [1, 2, 4, 4]), mindspore.float32)
|
|
|
|
|
>>> output = pool(x)
|
|
|
|
|
>>> output.shape()
|
|
|
|
|
(1, 2, 4, 2)
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
|
kernel_size=1,
|
|
|
|
|
stride=1,
|
|
|
|
|
pad_mode="valid"):
|
|
|
|
|
super(AvgPool1d, self).__init__(kernel_size, stride, pad_mode)
|
|
|
|
|
ParamValidator.check_type('kernel_size', kernel_size, [int,])
|
|
|
|
|
ParamValidator.check_type('stride', stride, [int,])
|
|
|
|
|
self.pad_mode = ParamValidator.check_string('pad_mode', pad_mode.upper(), ['VALID', 'SAME'])
|
|
|
|
|
ParamValidator.check_integer("kernel_size", kernel_size, 1, Rel.GE)
|
|
|
|
|
ParamValidator.check_integer("stride", stride, 1, Rel.GE)
|
|
|
|
|
self.kernel_size = (1, kernel_size)
|
|
|
|
|
self.stride = (1, stride)
|
|
|
|
|
self.avg_pool = P.AvgPool(ksize=self.kernel_size,
|
|
|
|
|
strides=self.stride,
|
|
|
|
|
padding=self.pad_mode)
|
|
|
|
|
self.shape = F.shape
|
|
|
|
|
self.reduce_mean = P.ReduceMean(keep_dims=True)
|
|
|
|
|
self.slice = P.Slice()
|
|
|
|
|
|
|
|
|
|
def construct(self, x):
|
|
|
|
|
batch, channel, high, width = self.shape(x)
|
|
|
|
|
if width == self.kernel_size[1]:
|
|
|
|
|
x = self.reduce_mean(x, 3)
|
|
|
|
|
elif width - self.kernel_size[1] < self.stride[1]:
|
|
|
|
|
x = self.slice(x, (0, 0, 0, 0), (batch, channel, high, self.kernel_size[1]))
|
|
|
|
|
x = self.reduce_mean(x, 3)
|
|
|
|
|
else:
|
|
|
|
|
x = self.avg_pool(x)
|
|
|
|
|
return x
|
|
|
|
|