|
|
|
@ -83,7 +83,7 @@ class Model:
|
|
|
|
|
>>> return out
|
|
|
|
|
>>>
|
|
|
|
|
>>> net = Net()
|
|
|
|
|
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
|
|
|
|
|
>>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
|
|
|
|
>>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
|
|
|
|
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None)
|
|
|
|
|
>>> dataset = get_dataset()
|
|
|
|
@ -400,7 +400,7 @@ class Model:
|
|
|
|
|
Examples:
|
|
|
|
|
>>> dataset = get_dataset()
|
|
|
|
|
>>> net = Net()
|
|
|
|
|
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
|
|
|
|
|
>>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
|
|
|
|
>>> loss_scale_manager = FixedLossScaleManager()
|
|
|
|
|
>>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
|
|
|
|
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None, loss_scale_manager=loss_scale_manager)
|
|
|
|
@ -523,7 +523,7 @@ class Model:
|
|
|
|
|
Examples:
|
|
|
|
|
>>> dataset = get_dataset()
|
|
|
|
|
>>> net = Net()
|
|
|
|
|
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
|
|
|
|
|
>>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
|
|
|
|
>>> model = Model(net, loss_fn=loss, optimizer=None, metrics={'acc'})
|
|
|
|
|
>>> model.eval(dataset)
|
|
|
|
|
"""
|
|
|
|
|