commit
6f1c603284
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,62 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_PACK_INFO_H_
|
||||
#define MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_PACK_INFO_H_
|
||||
|
||||
#include <string>
|
||||
#include <memory>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
#include "ir/value.h"
|
||||
#include "frontend/parallel/auto_parallel/operator_costmodel.h"
|
||||
#include "frontend/parallel/ops_info/operator_info.h"
|
||||
#include "frontend/parallel/strategy.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace parallel {
|
||||
class PackInfo : public OperatorInfo {
|
||||
public:
|
||||
PackInfo(const std::string &operator_name, const Shapes &inputs_shape, const Shapes &outputs_shape,
|
||||
const PrimitiveAttrs &attrs)
|
||||
: OperatorInfo(operator_name, inputs_shape, outputs_shape, attrs, std::make_shared<PackCost>(false)) {}
|
||||
~PackInfo() override = default;
|
||||
|
||||
Status Init(const StrategyPtr &strategy) override;
|
||||
Status InitForCostModel(const StrategyPtr &strategy) override;
|
||||
Status GenerateStrategies(int32_t) override;
|
||||
Status SetCostUnderStrategy(const StrategyPtr &) override;
|
||||
void ReComputeBatchSplitFlagList() override;
|
||||
|
||||
protected:
|
||||
Status GetAttrs() override;
|
||||
Status CheckStrategy(const StrategyPtr &strategy) override;
|
||||
Status InferMirrorOps() override;
|
||||
Status InferForwardCommunication() override { return SUCCESS; }
|
||||
Status InferTensorInfo() override;
|
||||
Status InferDevMatrixShape() override;
|
||||
Status InferTensorMap() override;
|
||||
|
||||
private:
|
||||
size_t axis_ = 0;
|
||||
};
|
||||
|
||||
using PackInfoPtr = std::shared_ptr<PackInfo>;
|
||||
} // namespace parallel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_PACK_INFO_H_
|
@ -0,0 +1,188 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import mindspore as ms
|
||||
import mindspore.context as context
|
||||
from mindspore import Tensor, Parameter
|
||||
import mindspore.nn as nn
|
||||
from mindspore.common.api import _executor
|
||||
from mindspore.nn import TrainOneStepCell, Momentum
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, weight1, weight2, axis=0, strategy1=None, strategy2=None, is_parameter=True):
|
||||
super(Net, self).__init__()
|
||||
self.pack = P.Pack(axis=axis).shard(strategy1)
|
||||
self.mul = P.Mul().shard(strategy2)
|
||||
if is_parameter:
|
||||
self.weight1 = Parameter(weight1, "w1")
|
||||
else:
|
||||
self.weight1 = weight1
|
||||
self.weight2 = Parameter(weight2, "w2")
|
||||
|
||||
def construct(self, x):
|
||||
out = self.pack([self.weight1, self.weight2])
|
||||
out = self.mul(x, out)
|
||||
return out
|
||||
|
||||
|
||||
class Net1(nn.Cell):
|
||||
def __init__(self, weight1, weight2, axis=0, strategy1=None, strategy2=None):
|
||||
super(Net1, self).__init__()
|
||||
self.pack = P.Pack(axis=axis).shard(strategy1)
|
||||
self.mul = P.Mul().shard(strategy2)
|
||||
self.weight1 = Parameter(weight1, "w1")
|
||||
self.weight2 = Parameter(weight2, "w2")
|
||||
|
||||
def construct(self, x):
|
||||
out = self.mul(x, self.weight1)
|
||||
out = self.pack([out, self.weight2])
|
||||
return out
|
||||
|
||||
|
||||
class Net2(nn.Cell):
|
||||
def __init__(self, weight1, weight2, weight3, axis=0, strategy1=None, strategy2=None, is_parameter=True):
|
||||
super(Net2, self).__init__()
|
||||
self.pack = P.Pack(axis=axis).shard(strategy1)
|
||||
self.mul = P.Mul().shard(strategy2)
|
||||
if is_parameter:
|
||||
self.weight1 = Parameter(weight1, "w1")
|
||||
else:
|
||||
self.weight1 = weight1
|
||||
self.weight2 = Parameter(weight2, "w2")
|
||||
self.weight3 = Parameter(weight2, "w3")
|
||||
|
||||
def construct(self, x):
|
||||
out = self.pack([self.weight1, self.weight2, self.weight3])
|
||||
out = self.mul(x, out)
|
||||
return out
|
||||
|
||||
|
||||
_w1 = Tensor(np.ones([48, 64]), dtype=ms.float32)
|
||||
_w2 = Tensor(np.ones([48, 64]), dtype=ms.float32)
|
||||
_w3 = Tensor(np.ones([48, 64]), dtype=ms.float32)
|
||||
_x = Tensor(np.ones([2, 48, 64]), dtype=ms.float32)
|
||||
_x1 = Tensor(np.ones([48, 64]), dtype=ms.float32)
|
||||
_x2 = Tensor(np.ones([3, 48, 64]), dtype=ms.float32)
|
||||
|
||||
|
||||
def compile_net(net):
|
||||
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
|
||||
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
train_net = TrainOneStepCell(net, optimizer)
|
||||
train_net.set_auto_parallel()
|
||||
_executor.compile(train_net, _x)
|
||||
context.reset_auto_parallel_context()
|
||||
|
||||
|
||||
def compile_net1(net):
|
||||
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
|
||||
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
train_net = TrainOneStepCell(net, optimizer)
|
||||
train_net.set_auto_parallel()
|
||||
_executor.compile(train_net, _x1)
|
||||
context.reset_auto_parallel_context()
|
||||
|
||||
|
||||
def compile_net2(net):
|
||||
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
|
||||
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
train_net = TrainOneStepCell(net, optimizer)
|
||||
train_net.set_auto_parallel()
|
||||
_executor.compile(train_net, _x2)
|
||||
context.reset_auto_parallel_context()
|
||||
|
||||
|
||||
def test_pack_parameter():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
strategy1 = ((4, 2), (4, 2))
|
||||
strategy2 = ((1, 4, 2), (1, 4, 2))
|
||||
net = Net(_w1, _w2, 0, strategy1, strategy2)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_pack_parameter_no_full_split():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
strategy1 = ((2, 2), (2, 2))
|
||||
strategy2 = ((1, 4, 2), (1, 4, 2))
|
||||
net = Net(_w1, _w2, 0, strategy1, strategy2)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_pack_tensor_and_parameter():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
strategy1 = ((4, 2), (4, 2))
|
||||
strategy2 = ((1, 4, 2), (1, 4, 2))
|
||||
net = Net(_w1, _w2, 0, strategy1, strategy2, False)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_pack_output():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
strategy1 = ((4, 2), (4, 2))
|
||||
strategy2 = ((4, 2), (4, 2))
|
||||
net = Net1(_w1, _w2, 0, strategy1, strategy2)
|
||||
compile_net1(net)
|
||||
|
||||
|
||||
def test_pack_output_axis1():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
strategy1 = ((4, 2), (4, 2))
|
||||
strategy2 = ((4, 2), (4, 2))
|
||||
net = Net1(_w1, _w2, 1, strategy1, strategy2)
|
||||
compile_net1(net)
|
||||
|
||||
|
||||
def test_pack_output_no_full_split():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
strategy1 = ((2, 2), (2, 2))
|
||||
strategy2 = ((4, 2), (4, 2))
|
||||
net = Net1(_w1, _w2, 0, strategy1, strategy2)
|
||||
compile_net1(net)
|
||||
|
||||
|
||||
def test_pack_no_strategy():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
strategy1 = None
|
||||
strategy2 = ((4, 2), (4, 2))
|
||||
net = Net1(_w1, _w2, 0, strategy1, strategy2)
|
||||
compile_net1(net)
|
||||
|
||||
|
||||
def test_pack_no_strategy_axis1():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
strategy1 = None
|
||||
strategy2 = ((4, 2), (4, 2))
|
||||
net = Net1(_w1, _w2, 1, strategy1, strategy2)
|
||||
compile_net1(net)
|
||||
|
||||
|
||||
def test_pack_auto_parallel():
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0)
|
||||
net = Net1(_w1, _w2, 0)
|
||||
compile_net1(net)
|
||||
|
||||
|
||||
def test_pack_auto_parallel_axis1():
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0)
|
||||
net = Net1(_w1, _w2, 1)
|
||||
compile_net1(net)
|
||||
|
||||
|
||||
def test_pack_auto_parallel_3_tensor():
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0)
|
||||
net = Net2(_w1, _w2, _w3)
|
||||
compile_net2(net)
|
Loading…
Reference in new issue