parent
da92f1affb
commit
727c7a4668
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,93 @@
|
||||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_CTCLOSS_CPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_CTCLOSS_CPU_KERNEL_H_
|
||||
#include <memory>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
#include <limits>
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
class CTCLossCPUKernel : public CPUKernel {
|
||||
public:
|
||||
CTCLossCPUKernel() = default;
|
||||
~CTCLossCPUKernel() override = default;
|
||||
|
||||
void InitKernel(const CNodePtr &kernel_node) override;
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs) override;
|
||||
|
||||
void GenLableWithBlank(uint32_t *seq_len, const std::vector<std::vector<uint32_t>> &batch_label,
|
||||
std::vector<std::vector<uint32_t>> *label_with_blank);
|
||||
|
||||
template <typename T>
|
||||
void CalculateFwdVar(const std::vector<uint32_t> &label_with_blank, const std::vector<std::vector<T>> &y,
|
||||
std::vector<std::vector<T>> *log_alpha_b);
|
||||
template <typename T>
|
||||
void CalculateBwdVar(const std::vector<uint32_t> &label_with_blank, const std::vector<std::vector<T>> &y,
|
||||
std::vector<std::vector<T>> *log_beta_b);
|
||||
template <typename T>
|
||||
void CalculateGrad(const std::vector<uint32_t> &label_with_blank, const std::vector<std::vector<T>> &y,
|
||||
const std::vector<std::vector<T>> &log_alpha_b, const std::vector<std::vector<T>> &log_beta_b,
|
||||
const T log_pzx, std::vector<std::vector<T>> *dy);
|
||||
|
||||
template <typename T>
|
||||
void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs);
|
||||
|
||||
private:
|
||||
void CheckParam(const CNodePtr &kernel_node);
|
||||
std::vector<size_t> probs_shape_;
|
||||
std::vector<size_t> indice_dims_;
|
||||
std::vector<size_t> labels_dims_;
|
||||
size_t num_class_;
|
||||
size_t max_time_;
|
||||
size_t batch_size_;
|
||||
uint32_t blank_index_;
|
||||
TypeId dtype_{kTypeUnknown};
|
||||
bool preprocess_collapse_repeated_;
|
||||
bool ctc_merge_repeated_;
|
||||
bool ignore_longer_outputs_than_inputs_;
|
||||
};
|
||||
|
||||
MS_REG_CPU_KERNEL(CTCLoss,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeFloat16)
|
||||
.AddOutputAttr(kNumberTypeFloat16),
|
||||
CTCLossCPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL(CTCLoss,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeFloat32),
|
||||
CTCLossCPUKernel);
|
||||
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_CTCLOSS_CPU_KERNEL_H_
|
@ -0,0 +1,88 @@
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.ops.composite import GradOperation
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.loss = P.CTCLoss()
|
||||
self.div = P.RealDiv()
|
||||
self.mean = P.ReduceMean()
|
||||
|
||||
def construct(self, probs, label, input_length, indices):
|
||||
x, _ = self.loss(probs, indices, label, input_length)
|
||||
x = self.mean(x)
|
||||
return x
|
||||
|
||||
|
||||
class GradData(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(GradData, self).__init__()
|
||||
self.grad = GradOperation(get_all=True, sens_param=False)
|
||||
self.network = network
|
||||
|
||||
def construct(self, probs, indices, labels, input_lengths):
|
||||
return self.grad(self.network)(probs, indices, labels, input_lengths)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_ctcloss():
|
||||
probs = Tensor([[[-4.4131, -4.6093, -3.4333, -3.9268, -2.8917, -3.4093, -4.2243, -1.1379, -7.1046, -0.6902],
|
||||
[-2.5109, -3.3397, -4.9384, -1.2723, -1.1443, -2.4683, -2.6768, -4.1282, -2.7062, -3.1906],
|
||||
[-2.5092, -1.6392, -2.0864, -4.0059, -1.5610, -2.3223, -2.4816, -2.9922, -3.1412, -2.3311]],
|
||||
|
||||
[[-2.1243, -3.5773, -3.1108, -4.4253, -2.7080, -1.9653, -2.0499, -2.4418, -1.8620, -1.5229],
|
||||
[-2.2479, -3.5128, -1.4189, -2.8701, -1.8562, -2.2752, -2.7019, -2.1865, -2.5634, -2.9869],
|
||||
[-3.2144, -1.3986, -3.1083, -3.9634, -3.5131, -3.2317, -2.6200, -1.7938, -1.8159, -1.7255]],
|
||||
|
||||
[[-3.1301, -2.1649, -0.9286, -2.9452, -2.5992, -2.0263, -2.9201, -3.2155, -2.8302, -3.3636],
|
||||
[-1.4661, -3.6311, -2.4781, -4.6180, -2.7308, -1.7019, -1.5570, -2.6012, -4.0788, -2.3073],
|
||||
[-2.6833, -1.5033, -3.6922, -2.6360, -2.6974, -2.6847, -2.7579, -2.1396, -1.4093, -2.9630]],
|
||||
|
||||
[[-2.0094, -2.3024, -3.3673, -1.0220, -2.8326, -2.2613, -3.0535, -2.9879, -3.7015, -2.4510],
|
||||
[-1.9071, -3.2603, -2.3229, -2.0572, -4.3450, -2.1284, -2.6306, -1.3824, -2.9815, -2.5061],
|
||||
[-2.7931, -3.7631, -3.2440, -4.3887, -1.0271, -3.8851, -1.2418, -4.5123, -2.2993, -2.4607]],
|
||||
|
||||
[[-1.5763, -2.7539, -3.6941, -3.8166, -1.2599, -2.6903, -2.5826, -4.8208, -2.9562, -1.6321],
|
||||
[-3.3031, -3.0087, -1.9982, -1.9081, -3.8731, -2.8764, -2.2485, -2.3808, -1.4283, -2.1625],
|
||||
[-2.4516, -3.2394, -4.2053, -4.3541, -2.5229, -4.0717, -1.4894, -2.3151, -1.1098, -2.3465]]],
|
||||
dtype=mstype.float32)
|
||||
labels = Tensor([3, 4, 6, 4, 7, 1, 4, 6, 6, 8], dtype=mstype.int32)
|
||||
indices = [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2], [2, 3]]
|
||||
indices = Tensor(indices, dtype=mstype.int64)
|
||||
input_lengths = Tensor([5, 5, 5], dtype=mstype.int32)
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||
net = Net()
|
||||
ctc_loss = net(probs, labels, input_lengths, indices)
|
||||
expect_loss = [9.083767]
|
||||
assert np.allclose(ctc_loss.asnumpy(), expect_loss)
|
||||
|
||||
grad = GradData(net)(probs, labels, input_lengths, indices)
|
||||
grad = P.ReduceMean()(grad[0])
|
||||
expect_grad = [-5.9604646e-09]
|
||||
assert np.allclose(grad.asnumpy(), expect_grad, atol=1e-5)
|
Loading…
Reference in new issue