|
|
|
@ -101,6 +101,9 @@ class _BatchNorm(Cell):
|
|
|
|
|
epsilon=self.eps,
|
|
|
|
|
momentum=self.momentum)
|
|
|
|
|
self.bn_infer = P.BatchNorm(is_training=False, epsilon=self.eps)
|
|
|
|
|
self.enable_global_sync = self.is_global and (self.is_ge_backend or (self.is_graph_mode and self.is_ascend))
|
|
|
|
|
self.enable_default_train = self.is_graph_mode and not self.is_global and \
|
|
|
|
|
(self.is_ge_backend or self.is_ascend)
|
|
|
|
|
|
|
|
|
|
data_parallel_strategy = ((1,), (1,))
|
|
|
|
|
data_parallel_strategy_one = ((1,), ())
|
|
|
|
@ -147,51 +150,43 @@ class _BatchNorm(Cell):
|
|
|
|
|
return y
|
|
|
|
|
|
|
|
|
|
def construct(self, x):
|
|
|
|
|
if self.input_dims == '2d':
|
|
|
|
|
_shape_check(self.shape(x))
|
|
|
|
|
if self.input_dims == '1d':
|
|
|
|
|
_shape_check_2d(self.shape(x))
|
|
|
|
|
if self.input_dims == 'both':
|
|
|
|
|
_shape_check_2d_or_4d(self.shape(x))
|
|
|
|
|
_shape_check_bn(self.shape(x), self.input_dims)
|
|
|
|
|
if self.use_batch_statistics is None:
|
|
|
|
|
flag = self.training
|
|
|
|
|
else:
|
|
|
|
|
flag = self.use_batch_statistics
|
|
|
|
|
|
|
|
|
|
if flag:
|
|
|
|
|
if self.is_ge_backend and self.is_global:
|
|
|
|
|
if self.enable_global_sync:
|
|
|
|
|
axes, re_shape = _shape_infer(F.shape(x), self.num_features)
|
|
|
|
|
y = self._global_sync(x, axes, re_shape)
|
|
|
|
|
elif self.is_graph_mode and (self.is_ge_backend or self.is_ascend):
|
|
|
|
|
if self.is_global:
|
|
|
|
|
axes, re_shape = _shape_infer(F.shape(x), self.num_features)
|
|
|
|
|
y = self._global_sync(x, axes, re_shape)
|
|
|
|
|
else:
|
|
|
|
|
y, batch_mean, batch_var, _, _ = \
|
|
|
|
|
self.bn_train(x,
|
|
|
|
|
self.gamma,
|
|
|
|
|
self.beta,
|
|
|
|
|
None,
|
|
|
|
|
None)
|
|
|
|
|
|
|
|
|
|
mean_sub = self.sub_mean(self.moving_mean, batch_mean)
|
|
|
|
|
temp_mean = self.mul_mean(mean_sub, self.momentum)
|
|
|
|
|
mean_sub2 = self.sub_var(self.moving_variance, batch_var)
|
|
|
|
|
temp_variance = self.mul_var(mean_sub2, self.momentum)
|
|
|
|
|
y = F.depend(y, self.assign_sub_mean(self.moving_mean, temp_mean))
|
|
|
|
|
y = F.depend(y, self.assign_sub_var(self.moving_variance, temp_variance))
|
|
|
|
|
else:
|
|
|
|
|
y = self.bn_train(x,
|
|
|
|
|
self.gamma,
|
|
|
|
|
self.beta,
|
|
|
|
|
self.moving_mean,
|
|
|
|
|
self.moving_variance)[0]
|
|
|
|
|
else:
|
|
|
|
|
y = self.bn_infer(x,
|
|
|
|
|
self.gamma,
|
|
|
|
|
self.beta,
|
|
|
|
|
self.moving_mean,
|
|
|
|
|
self.moving_variance)[0]
|
|
|
|
|
return y
|
|
|
|
|
return self._global_sync(x, axes, re_shape)
|
|
|
|
|
|
|
|
|
|
if self.enable_default_train:
|
|
|
|
|
y, batch_mean, batch_var, _, _ = self.bn_train(x,
|
|
|
|
|
self.gamma,
|
|
|
|
|
self.beta,
|
|
|
|
|
None,
|
|
|
|
|
None)
|
|
|
|
|
|
|
|
|
|
mean_sub = self.sub_mean(self.moving_mean, batch_mean)
|
|
|
|
|
temp_mean = self.mul_mean(mean_sub, self.momentum)
|
|
|
|
|
mean_sub2 = self.sub_var(self.moving_variance, batch_var)
|
|
|
|
|
temp_variance = self.mul_var(mean_sub2, self.momentum)
|
|
|
|
|
y = F.depend(y, self.assign_sub_mean(self.moving_mean, temp_mean))
|
|
|
|
|
y = F.depend(y, self.assign_sub_var(self.moving_variance, temp_variance))
|
|
|
|
|
return y
|
|
|
|
|
|
|
|
|
|
return self.bn_train(x,
|
|
|
|
|
self.gamma,
|
|
|
|
|
self.beta,
|
|
|
|
|
self.moving_mean,
|
|
|
|
|
self.moving_variance)[0]
|
|
|
|
|
|
|
|
|
|
return self.bn_infer(x,
|
|
|
|
|
self.gamma,
|
|
|
|
|
self.beta,
|
|
|
|
|
self.moving_mean,
|
|
|
|
|
self.moving_variance)[0]
|
|
|
|
|
|
|
|
|
|
def extend_repr(self):
|
|
|
|
|
return 'num_features={}, eps={}, momentum={}, gamma={}, beta={}, moving_mean={}, moving_variance={}'.format(
|
|
|
|
@ -204,12 +199,6 @@ def _channel_check(channel, num_channel):
|
|
|
|
|
raise ValueError("the input channel is not equal with num_channel")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@constexpr
|
|
|
|
|
def _shape_check_2d(input_shape):
|
|
|
|
|
if len(input_shape) != 2:
|
|
|
|
|
raise ValueError("The input must has 2 dims.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@constexpr
|
|
|
|
|
def _shape_check(in_shape):
|
|
|
|
|
if len(in_shape) != 4:
|
|
|
|
@ -217,8 +206,13 @@ def _shape_check(in_shape):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@constexpr
|
|
|
|
|
def _shape_check_2d_or_4d(in_shape):
|
|
|
|
|
if len(in_shape) != 2 and len(in_shape) != 4:
|
|
|
|
|
def _shape_check_bn(in_shape, in_dims):
|
|
|
|
|
dim = len(in_shape)
|
|
|
|
|
if in_dims == '1d' and dim != 2:
|
|
|
|
|
raise ValueError("The input must has 2 dims.")
|
|
|
|
|
if in_dims == '2d' and dim != 4:
|
|
|
|
|
raise ValueError("The input must has 4 dims.")
|
|
|
|
|
if in_dims == 'both' and dim != 2 and dim != 4:
|
|
|
|
|
raise ValueError("The input must has 2 dims or 4 dims.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|