|
|
|
@ -1,62 +1,187 @@
|
|
|
|
|
# LeNet Example
|
|
|
|
|
|
|
|
|
|
## Description
|
|
|
|
|
|
|
|
|
|
Training LeNet with dataset in MindSpore.
|
|
|
|
|
|
|
|
|
|
This is the simple and basic tutorial for constructing a network in MindSpore.
|
|
|
|
|
|
|
|
|
|
## Requirements
|
|
|
|
|
|
|
|
|
|
- Install [MindSpore](https://www.mindspore.cn/install/en).
|
|
|
|
|
|
|
|
|
|
- Download the dataset, the directory structure is as follows:
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
└─Data
|
|
|
|
|
├─test
|
|
|
|
|
│ t10k-images.idx3-ubyte
|
|
|
|
|
│ t10k-labels.idx1-ubyte
|
|
|
|
|
│
|
|
|
|
|
└─train
|
|
|
|
|
train-images.idx3-ubyte
|
|
|
|
|
train-labels.idx1-ubyte
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
## Running the example
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
# train LeNet, hyperparameter setting in config.py
|
|
|
|
|
python train.py --data_path Data
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
You will get the loss value of each step as following:
|
|
|
|
|
|
|
|
|
|
```bash
|
|
|
|
|
epoch: 1 step: 1, loss is 2.3040335
|
|
|
|
|
...
|
|
|
|
|
epoch: 1 step: 1739, loss is 0.06952668
|
|
|
|
|
epoch: 1 step: 1740, loss is 0.05038793
|
|
|
|
|
epoch: 1 step: 1741, loss is 0.05018193
|
|
|
|
|
...
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
Then, evaluate LeNet according to network model
|
|
|
|
|
```python
|
|
|
|
|
# evaluate LeNet
|
|
|
|
|
python eval.py --data_path Data --ckpt_path checkpoint_lenet-1_1875.ckpt
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
## Note
|
|
|
|
|
Here are some optional parameters:
|
|
|
|
|
|
|
|
|
|
```bash
|
|
|
|
|
--device_target {Ascend,GPU,CPU}
|
|
|
|
|
device where the code will be implemented (default: Ascend)
|
|
|
|
|
--data_path DATA_PATH
|
|
|
|
|
path where the dataset is saved
|
|
|
|
|
--dataset_sink_mode DATASET_SINK_MODE
|
|
|
|
|
dataset_sink_mode is False or True
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
You can run ```python train.py -h``` or ```python eval.py -h``` to get more information.
|
|
|
|
|
# Contents
|
|
|
|
|
|
|
|
|
|
- [LeNet Description](#lenet-description)
|
|
|
|
|
- [Model Architecture](#model-architecture)
|
|
|
|
|
- [Dataset](#dataset)
|
|
|
|
|
- [Environment Requirements](#environment-requirements)
|
|
|
|
|
- [Quick Start](#quick-start)
|
|
|
|
|
- [Script Description](#script-description)
|
|
|
|
|
- [Script and Sample Code](#script-and-sample-code)
|
|
|
|
|
- [Script Parameters](#script-parameters)
|
|
|
|
|
- [Training Process](#training-process)
|
|
|
|
|
- [Training](#training)
|
|
|
|
|
- [Evaluation Process](#evaluation-process)
|
|
|
|
|
- [Evaluation](#evaluation)
|
|
|
|
|
- [Model Description](#model-description)
|
|
|
|
|
- [Performance](#performance)
|
|
|
|
|
- [Evaluation Performance](#evaluation-performance)
|
|
|
|
|
- [ModelZoo Homepage](#modelzoo-homepage)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# [LeNet Description](#contents)
|
|
|
|
|
|
|
|
|
|
LeNet was proposed in 1998, a typical convolutional neural network. It was used for digit recognition and got big success.
|
|
|
|
|
|
|
|
|
|
[Paper](https://ieeexplore.ieee.org/document/726791): Y.Lecun, L.Bottou, Y.Bengio, P.Haffner. Gradient-Based Learning Applied to Document Recognition. *Proceedings of the IEEE*. 1998.
|
|
|
|
|
|
|
|
|
|
# [Model Architecture](#contents)
|
|
|
|
|
|
|
|
|
|
LeNet is very simple, which contains 5 layers. The layer composition consists of 2 convolutional layers and 3 fully connected layers.
|
|
|
|
|
|
|
|
|
|
# [Dataset](#contents)
|
|
|
|
|
|
|
|
|
|
Dataset used: [MNIST](<http://yann.lecun.com/exdb/mnist/>)
|
|
|
|
|
|
|
|
|
|
- Dataset size:52.4M,60,000 28*28 in 10 classes
|
|
|
|
|
- Train:60,000 images
|
|
|
|
|
- Test:10,000 images
|
|
|
|
|
- Data format:binary files
|
|
|
|
|
- Note:Data will be processed in dataset.py
|
|
|
|
|
|
|
|
|
|
- The directory structure is as follows:
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
└─Data
|
|
|
|
|
├─test
|
|
|
|
|
│ t10k-images.idx3-ubyte
|
|
|
|
|
│ t10k-labels.idx1-ubyte
|
|
|
|
|
│
|
|
|
|
|
└─train
|
|
|
|
|
train-images.idx3-ubyte
|
|
|
|
|
train-labels.idx1-ubyte
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
# [Environment Requirements](#contents)
|
|
|
|
|
|
|
|
|
|
- Hardware(Ascend/GPU/CPU)
|
|
|
|
|
- Prepare hardware environment with Ascend, GPU, or CPU processor.
|
|
|
|
|
- Framework
|
|
|
|
|
- [MindSpore](http://10.90.67.50/mindspore/archive/20200506/OpenSource/me_vm_x86/)
|
|
|
|
|
- For more information, please check the resources below:
|
|
|
|
|
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
|
|
|
|
|
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
|
|
|
|
|
|
|
|
|
|
# [Quick Start](#contents)
|
|
|
|
|
|
|
|
|
|
After installing MindSpore via the official website, you can start training and evaluation as follows:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
# enter script dir, train LeNet
|
|
|
|
|
sh run_standalone_train_ascend.sh [DATA_PATH] [CKPT_SAVE_PATH]
|
|
|
|
|
# enter script dir, evaluate LeNet
|
|
|
|
|
sh run_standalone_eval_ascend.sh [DATA_PATH] [CKPT_NAME]
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
# [Script Description](#contents)
|
|
|
|
|
|
|
|
|
|
## [Script and Sample Code](#contents)
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
├── model_zoo
|
|
|
|
|
├── README.md // descriptions about all the models
|
|
|
|
|
├── lenet
|
|
|
|
|
├── README.md // descriptions about lenet
|
|
|
|
|
├── requirements.txt // package needed
|
|
|
|
|
├── scripts
|
|
|
|
|
│ ├──run_standalone_train_cpu.sh // train in cpu
|
|
|
|
|
│ ├──run_standalone_train_gpu.sh // train in gpu
|
|
|
|
|
│ ├──run_standalone_train_ascend.sh // train in ascend
|
|
|
|
|
│ ├──run_standalone_eval_cpu.sh // evaluate in cpu
|
|
|
|
|
│ ├──run_standalone_eval_gpu.sh // evaluate in gpu
|
|
|
|
|
│ ├──run_standalone_eval_ascend.sh // evaluate in ascend
|
|
|
|
|
├── src
|
|
|
|
|
│ ├──dataset.py // creating dataset
|
|
|
|
|
│ ├──lenet.py // lenet architecture
|
|
|
|
|
│ ├──config.py // parameter configuration
|
|
|
|
|
├── train.py // training script
|
|
|
|
|
├── eval.py // evaluation script
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
## [Script Parameters](#contents)
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
Major parameters in train.py and config.py as follows:
|
|
|
|
|
|
|
|
|
|
--data_path: The absolute full path to the train and evaluation datasets.
|
|
|
|
|
--epoch_size: Total training epochs.
|
|
|
|
|
--batch_size: Training batch size.
|
|
|
|
|
--image_height: Image height used as input to the model.
|
|
|
|
|
--image_width: Image width used as input the model.
|
|
|
|
|
--device_target: Device where the code will be implemented. Optional values
|
|
|
|
|
are "Ascend", "GPU", "CPU".
|
|
|
|
|
--checkpoint_path: The absolute full path to the checkpoint file saved
|
|
|
|
|
after training.
|
|
|
|
|
--data_path: Path where the dataset is saved
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
## [Training Process](#contents)
|
|
|
|
|
|
|
|
|
|
### Training
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
python train.py --data_path Data --ckpt_path ckpt > log.txt 2>&1 &
|
|
|
|
|
or enter script dir, and run the script
|
|
|
|
|
sh run_standalone_train_ascend.sh Data ckpt
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
After training, the loss value will be achieved as follows:
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
# grep "loss is " log.txt
|
|
|
|
|
epoch: 1 step: 1, loss is 2.2791853
|
|
|
|
|
...
|
|
|
|
|
epoch: 1 step: 1536, loss is 1.9366643
|
|
|
|
|
epoch: 1 step: 1537, loss is 1.6983616
|
|
|
|
|
epoch: 1 step: 1538, loss is 1.0221305
|
|
|
|
|
...
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
The model checkpoint will be saved in the current directory.
|
|
|
|
|
|
|
|
|
|
## [Evaluation Process](#contents)
|
|
|
|
|
|
|
|
|
|
### Evaluation
|
|
|
|
|
|
|
|
|
|
Before running the command below, please check the checkpoint path used for evaluation.
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
python eval.py --data_path Data --ckpt_path ckpt/checkpoint_lenet-1_1875.ckpt > log.txt 2>&1 &
|
|
|
|
|
or enter script dir, and run the script
|
|
|
|
|
sh run_standalone_eval_ascend.sh Data ckpt/checkpoint_lenet-1_1875.ckpt
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
You can view the results through the file "log.txt". The accuracy of the test dataset will be as follows:
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
# grep "Accuracy: " log.txt
|
|
|
|
|
'Accuracy': 0.9842
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
# [Model Description](#contents)
|
|
|
|
|
|
|
|
|
|
## [Performance](#contents)
|
|
|
|
|
|
|
|
|
|
### Evaluation Performance
|
|
|
|
|
|
|
|
|
|
| Parameters | LeNet |
|
|
|
|
|
| -------------------------- | ----------------------------------------------------------- |
|
|
|
|
|
| Resource | Ascend 910 ;CPU 2.60GHz,56cores;Memory,314G |
|
|
|
|
|
| uploaded Date | 06/09/2020 (month/day/year) |
|
|
|
|
|
| MindSpore Version | 0.5.0-beta |
|
|
|
|
|
| Dataset | MNIST |
|
|
|
|
|
| Training Parameters | epoch=10, steps=1875, batch_size = 32, lr=0.01 |
|
|
|
|
|
| Optimizer | Momentum |
|
|
|
|
|
| Loss Function | Softmax Cross Entropy |
|
|
|
|
|
| outputs | probability |
|
|
|
|
|
| Loss | 0.002 |
|
|
|
|
|
| Speed | 1.70 ms/step |
|
|
|
|
|
| Total time | 43.1s | |
|
|
|
|
|
| Checkpoint for Fine tuning | 482k (.ckpt file) |
|
|
|
|
|
| Scripts | https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/lenet |
|
|
|
|
|
|
|
|
|
|
# [Description of Random Situation](#contents)
|
|
|
|
|
|
|
|
|
|
In dataset.py, we set the seed inside “create_dataset" function.
|
|
|
|
|
|
|
|
|
|
# [ModelZoo Homepage](#contents)
|
|
|
|
|
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
|
|
|
|
|