return error code if prev tensor not found and add validation checks

pull/9243/head
Harshvardhan Gupta 4 years ago
parent 689f102f86
commit 7687a55c0a

@ -157,7 +157,7 @@ void DebugServices::CheckWatchpoints(std::vector<std::string> *name, std::vector
}
default:
MS_LOG(INFO) << "Unsupported tensor type";
break;
continue;
}
base_summary_ptr->SummarizeTensor(watchpoints_to_check);
}
@ -168,7 +168,7 @@ void DebugServices::CheckWatchpoints(std::vector<std::string> *name, std::vector
std::vector<parameter_t> parameter_list = {};
if (wp.condition.type == IS_OVERFLOW) {
is_hit = (std::find(op_overflows.begin(), op_overflows.end(), tensor_name_no_slot) != op_overflows.end());
} else {
} else if (base_summary_ptr != nullptr) {
auto item = base_summary_ptr->IsWatchpointHit(wp);
is_hit = std::get<0>(item);
error_code = std::get<1>(item);

@ -80,6 +80,8 @@ class DebugServices {
if (std::isnan(actualValue)) return;
actual_value = actualValue;
// if cannot extract inequality type from watchpoint
// try extract from parameter name
if (inequality_type.empty()) {
auto pos = name.find_last_of('_');
if (pos != std::string::npos) {

@ -135,8 +135,9 @@ std::tuple<bool, int, std::vector<DebugServices::parameter_t>> TensorSummary<T>:
bool hit = false;
std::bitset<32> error_code;
CONDITION_TYPE type = wp.condition.type;
// bit 0 denotes presence of nan
error_code.set(0, nan_count > 0);
// bit 1 denotes presence of inf
error_code.set(1, inf_count > 0);
if (type == CONDITION_TYPE::HAS_NAN) {
@ -150,20 +151,28 @@ std::tuple<bool, int, std::vector<DebugServices::parameter_t>> TensorSummary<T>:
hit = (nan_count + inf_count) > 0;
} else if (type == CONDITION_TYPE::NOT_CHANGED && prev_tensor_ptr && error_code.none()) {
hit = all_close[wp.id]->IsAllClose();
} else if ((type == CONDITION_TYPE::NOT_CHANGED || type == CONDITION_TYPE::CHANGE_TOO_LARGE ||
type == CONDITION_TYPE::CHANGE_TOO_SMALL) &&
!prev_tensor_ptr) {
// bit 2 denotes absence of previous tensor
error_code.set(2, true);
}
for (auto &parameter : parameter_list) {
if (parameter.disabled || error_code.any()) {
continue;
}
std::string inequality_type;
if (wp.is_gt_wp()) {
inequality_type = "gt";
} else if (wp.is_lt_wp()) {
inequality_type = "lt";
if (error_code.none()) {
for (auto &parameter : parameter_list) {
if (parameter.disabled || error_code.any()) {
continue;
}
// extract inequality type from watchpoint for backward compatibility
std::string inequality_type;
if (wp.is_gt_wp()) {
inequality_type = "gt";
} else if (wp.is_lt_wp()) {
inequality_type = "lt";
}
parameter.Evaluate(StatLookup(parameter.name, wp), inequality_type);
hit |= parameter.hit;
}
parameter.Evaluate(StatLookup(parameter.name, wp), inequality_type);
hit |= parameter.hit;
}
return std::make_tuple(hit, static_cast<int32_t>(error_code.to_ulong()), parameter_list);
}
@ -188,11 +197,17 @@ double_t TensorSummary<T>::StatLookup(const std::string &parameter_name, const D
} else if (param_type == "sd") {
return current_mean_variance.GetStandardDeviation();
} else if (param_type == "abs_mean") {
return means["abs_current_mean"]->GetMean();
} else if (param_type == "abs_mean_update_ratio") {
return means["curr_prev_diff_mean"]->GetMean() / (means["abs_prev_mean"]->GetMean() + epsilon);
if (means.find("abs_current_mean") != means.end()) {
return means["abs_current_mean"]->GetMean();
}
} else if (param_type == "abs_mean_update_ratio" && prev_tensor_ptr) {
if (means.find("curr_prev_diff_mean") != means.end() && means.find("abs_prev_mean") != means.end()) {
return means["curr_prev_diff_mean"]->GetMean() / (means["abs_prev_mean"]->GetMean() + epsilon);
}
} else if (param_type == "range_percentage") {
return range_counts[wp.id]->GetPercentInRange();
if (range_counts.find(wp.id) != range_counts.end()) {
return range_counts[wp.id]->GetPercentInRange();
}
} else if (param_type == "zero_percentage") {
return GetZeroValPercent();
}

Loading…
Cancel
Save