parent
4d6bbd1218
commit
776eb28e6e
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,123 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# less required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import os
|
||||
import argparse
|
||||
import logging
|
||||
import numpy as np
|
||||
import mindspore
|
||||
import mindspore.nn as nn
|
||||
import mindspore.ops.operations as F
|
||||
from mindspore import context, Model
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
|
||||
from src.data_loader import create_dataset
|
||||
from src.unet import UNet
|
||||
from src.config import cfg_unet
|
||||
|
||||
from scipy.special import softmax
|
||||
|
||||
device_id = int(os.getenv('DEVICE_ID'))
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, device_id=device_id)
|
||||
|
||||
|
||||
|
||||
|
||||
class CrossEntropyWithLogits(_Loss):
|
||||
def __init__(self):
|
||||
super(CrossEntropyWithLogits, self).__init__()
|
||||
self.transpose_fn = F.Transpose()
|
||||
self.reshape_fn = F.Reshape()
|
||||
self.softmax_cross_entropy_loss = nn.SoftmaxCrossEntropyWithLogits()
|
||||
self.cast = F.Cast()
|
||||
def construct(self, logits, label):
|
||||
# NCHW->NHWC
|
||||
logits = self.transpose_fn(logits, (0, 2, 3, 1))
|
||||
logits = self.cast(logits, mindspore.float32)
|
||||
label = self.transpose_fn(label, (0, 2, 3, 1))
|
||||
|
||||
loss = self.reduce_mean(self.softmax_cross_entropy_loss(self.reshape_fn(logits, (-1, 2)),
|
||||
self.reshape_fn(label, (-1, 2))))
|
||||
return self.get_loss(loss)
|
||||
|
||||
|
||||
class dice_coeff(nn.Metric):
|
||||
def __init__(self):
|
||||
super(dice_coeff, self).__init__()
|
||||
self.clear()
|
||||
def clear(self):
|
||||
self._dice_coeff_sum = 0
|
||||
self._samples_num = 0
|
||||
|
||||
def update(self, *inputs):
|
||||
if len(inputs) != 2:
|
||||
raise ValueError('Mean dice coeffcient need 2 inputs (y_pred, y), but got {}'.format(len(inputs)))
|
||||
|
||||
y_pred = self._convert_data(inputs[0])
|
||||
y = self._convert_data(inputs[1])
|
||||
self._samples_num += y.shape[0]
|
||||
y_pred = y_pred.transpose(0, 2, 3, 1)
|
||||
y = y.transpose(0, 2, 3, 1)
|
||||
y_pred = softmax(y_pred, axis=3)
|
||||
|
||||
inter = np.dot(y_pred.flatten(), y.flatten())
|
||||
union = np.dot(y_pred.flatten(), y_pred.flatten()) + np.dot(y.flatten(), y.flatten())
|
||||
|
||||
single_dice_coeff = 2*float(inter)/float(union+1e-6)
|
||||
print("single dice coeff is:", single_dice_coeff)
|
||||
self._dice_coeff_sum += single_dice_coeff
|
||||
|
||||
def eval(self):
|
||||
if self._samples_num == 0:
|
||||
raise RuntimeError('Total samples num must not be 0.')
|
||||
return self._dice_coeff_sum / float(self._samples_num)
|
||||
|
||||
def test_net(data_dir,
|
||||
ckpt_path,
|
||||
cross_valid_ind=1,
|
||||
cfg=None):
|
||||
|
||||
net = UNet(n_channels=cfg['num_channels'], n_classes=cfg['num_classes'])
|
||||
param_dict = load_checkpoint(ckpt_path)
|
||||
load_param_into_net(net, param_dict)
|
||||
|
||||
criterion = CrossEntropyWithLogits()
|
||||
_, valid_dataset = create_dataset(data_dir, 1, 1, False, cross_valid_ind, False)
|
||||
model = Model(net, loss_fn=criterion, metrics={"dice_coeff": dice_coeff()})
|
||||
|
||||
print("============== Starting Evaluating ============")
|
||||
dice_score = model.eval(valid_dataset, dataset_sink_mode=False)
|
||||
print("============== Cross valid dice coeff is:", dice_score)
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser(description='Test the UNet on images and target masks',
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
parser.add_argument('-d', '--data_url', dest='data_url', type=str, default='data/',
|
||||
help='data directory')
|
||||
parser.add_argument('-p', '--ckpt_path', dest='ckpt_path', type=str, default='ckpt_unet_medical_adam-1_600.ckpt',
|
||||
help='checkpoint path')
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s')
|
||||
args = get_args()
|
||||
print("Testing setting:", args)
|
||||
test_net(data_dir=args.data_url,
|
||||
ckpt_path=args.ckpt_path,
|
||||
cross_valid_ind=cfg_unet['cross_valid_ind'],
|
||||
cfg=cfg_unet)
|
@ -0,0 +1,50 @@
|
||||
#!/bin/bash
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# less required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
echo "=============================================================================================================="
|
||||
echo "Please run the script as: "
|
||||
echo "bash scripts/run_distribute_train.sh [RANK_TABLE_FILE] [DATASET]"
|
||||
echo "for example: bash run_distribute_train.sh /absolute/path/to/RANK_TABLE_FILE /absolute/path/to/data"
|
||||
echo "=============================================================================================================="
|
||||
|
||||
if [ $# != 2 ]
|
||||
then
|
||||
echo "Usage: bash scripts/run_distribute_train.sh [RANK_TABLE_FILE] [DATASET]"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
export RANK_SIZE=8
|
||||
|
||||
for((i=0;i<RANK_SIZE;i++))
|
||||
do
|
||||
rm -rf LOG$i
|
||||
mkdir ./LOG$i
|
||||
cp ./*.py ./LOG$i
|
||||
cp -r ./src ./LOG$i
|
||||
cd ./LOG$i || exit
|
||||
export RANK_TABLE_FILE=$1
|
||||
export RANK_SIZE=8
|
||||
export RANK_ID=$i
|
||||
export DEVICE_ID=$i
|
||||
echo "start training for rank $i, device $DEVICE_ID"
|
||||
env > env.log
|
||||
|
||||
python3 train.py \
|
||||
--run_distribute=True \
|
||||
--data_url=$2 > log.txt 2>&1 &
|
||||
|
||||
cd ../
|
||||
done
|
@ -0,0 +1,24 @@
|
||||
#!/bin/bash
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# less required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
echo "=============================================================================================================="
|
||||
echo "Please run the script as: "
|
||||
echo "bash scripts/run_standalone_eval.sh [DATASET] [CHECKPOINT]"
|
||||
echo "for example: bash run_standalone_eval.sh /path/to/data/ /path/to/checkpoint/"
|
||||
echo "=============================================================================================================="
|
||||
|
||||
export DEVICE_ID=0
|
||||
python eval.py --data_url=$1 --ckpt_path=$2 > eval.log 2>&1 &
|
@ -0,0 +1,24 @@
|
||||
#!/bin/bash
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# less required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
echo "=============================================================================================================="
|
||||
echo "Please run the script as: "
|
||||
echo "bash scripts/run_standalone_train.sh [DATASET]"
|
||||
echo "for example: bash run_standalone_train.sh /path/to/data/"
|
||||
echo "=============================================================================================================="
|
||||
|
||||
export DEVICE_ID=0
|
||||
python train.py --data_url=$1 > train.log 2>&1 &
|
@ -0,0 +1,30 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# less required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
cfg_unet = {
|
||||
'name': 'Unet',
|
||||
'lr': 0.0001,
|
||||
'epochs': 400,
|
||||
'distribute_epochs': 1600,
|
||||
'batchsize': 16,
|
||||
'cross_valid_ind': 1,
|
||||
'num_classes': 2,
|
||||
'num_channels': 1,
|
||||
|
||||
'keep_checkpoint_max': 10,
|
||||
'weight_decay': 0.0005,
|
||||
'loss_scale': 1024.0,
|
||||
'FixedLossScaleManager': 1024.0,
|
||||
}
|
@ -0,0 +1,159 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# less required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import os
|
||||
from collections import deque
|
||||
import numpy as np
|
||||
from PIL import Image, ImageSequence
|
||||
import mindspore.dataset as ds
|
||||
import mindspore.dataset.vision.c_transforms as c_vision
|
||||
from mindspore.dataset.vision.utils import Inter
|
||||
from mindspore.communication.management import get_rank, get_group_size
|
||||
|
||||
|
||||
|
||||
def _load_multipage_tiff(path):
|
||||
"""Load tiff images containing many images in the channel dimension"""
|
||||
return np.array([np.array(p) for p in ImageSequence.Iterator(Image.open(path))])
|
||||
|
||||
def _get_val_train_indices(length, fold, ratio=0.8):
|
||||
assert 0 < ratio <= 1, "Train/total data ratio must be in range (0.0, 1.0]"
|
||||
np.random.seed(0)
|
||||
indices = np.arange(0, length, 1, dtype=np.int)
|
||||
np.random.shuffle(indices)
|
||||
|
||||
if fold is not None:
|
||||
indices = deque(indices)
|
||||
indices.rotate(fold * round((1.0 - ratio) * length))
|
||||
indices = np.array(indices)
|
||||
train_indices = indices[:round(ratio * len(indices))]
|
||||
val_indices = indices[round(ratio * len(indices)):]
|
||||
else:
|
||||
train_indices = indices
|
||||
val_indices = []
|
||||
return train_indices, val_indices
|
||||
|
||||
def data_post_process(img, mask):
|
||||
|
||||
img = np.expand_dims(img, axis=0)
|
||||
mask = (mask > 0.5).astype(np.int)
|
||||
mask = (np.arange(mask.max() + 1) == mask[..., None]).astype(int)
|
||||
mask = mask.transpose(2, 0, 1).astype(np.float32)
|
||||
return img, mask
|
||||
|
||||
|
||||
def train_data_augmentation(img, mask):
|
||||
|
||||
h_flip = np.random.random()
|
||||
if h_flip > 0.5:
|
||||
img = np.flipud(img)
|
||||
mask = np.flipud(mask)
|
||||
v_flip = np.random.random()
|
||||
if v_flip > 0.5:
|
||||
img = np.fliplr(img)
|
||||
mask = np.fliplr(mask)
|
||||
|
||||
left = int(np.random.uniform()*0.3*572)
|
||||
right = int((1-np.random.uniform()*0.3)*572)
|
||||
top = int(np.random.uniform()*0.3*572)
|
||||
bottom = int((1-np.random.uniform()*0.3)*572)
|
||||
|
||||
|
||||
img = img[top:bottom, left:right]
|
||||
mask = mask[top:bottom, left:right]
|
||||
|
||||
#adjust brightness
|
||||
brightness = np.random.uniform(-0.2, 0.2)
|
||||
img = np.float32(img+brightness*np.ones(img.shape))
|
||||
img = np.clip(img, -1.0, 1.0)
|
||||
|
||||
return img, mask
|
||||
|
||||
|
||||
def create_dataset(data_dir, repeat=400, train_batch_size=16, augment=False, cross_val_ind=1, run_distribute=False):
|
||||
|
||||
images = _load_multipage_tiff(os.path.join(data_dir, 'train-volume.tif'))
|
||||
masks = _load_multipage_tiff(os.path.join(data_dir, 'train-labels.tif'))
|
||||
|
||||
train_indices, val_indices = _get_val_train_indices(len(images), cross_val_ind)
|
||||
train_images = images[train_indices]
|
||||
train_masks = masks[train_indices]
|
||||
train_images = np.repeat(train_images, repeat, axis=0)
|
||||
train_masks = np.repeat(train_masks, repeat, axis=0)
|
||||
val_images = images[val_indices]
|
||||
val_masks = masks[val_indices]
|
||||
|
||||
train_image_data = {"image": train_images}
|
||||
train_mask_data = {"mask": train_masks}
|
||||
valid_image_data = {"image": val_images}
|
||||
valid_mask_data = {"mask": val_masks}
|
||||
|
||||
|
||||
ds_train_images = ds.NumpySlicesDataset(data=train_image_data, sampler=None, shuffle=False)
|
||||
ds_train_masks = ds.NumpySlicesDataset(data=train_mask_data, sampler=None, shuffle=False)
|
||||
|
||||
if run_distribute:
|
||||
rank_id = get_rank()
|
||||
rank_size = get_group_size()
|
||||
ds_train_images = ds.NumpySlicesDataset(data=train_image_data,
|
||||
sampler=None,
|
||||
shuffle=False,
|
||||
num_shards=rank_size,
|
||||
shard_id=rank_id)
|
||||
ds_train_masks = ds.NumpySlicesDataset(data=train_mask_data,
|
||||
sampler=None,
|
||||
shuffle=False,
|
||||
num_shards=rank_size,
|
||||
shard_id=rank_id)
|
||||
|
||||
ds_valid_images = ds.NumpySlicesDataset(data=valid_image_data, sampler=None, shuffle=False)
|
||||
ds_valid_masks = ds.NumpySlicesDataset(data=valid_mask_data, sampler=None, shuffle=False)
|
||||
|
||||
c_resize_op = c_vision.Resize(size=(388, 388), interpolation=Inter.BILINEAR)
|
||||
c_pad = c_vision.Pad(padding=92)
|
||||
c_rescale_image = c_vision.Rescale(1.0/127.5, -1)
|
||||
c_rescale_mask = c_vision.Rescale(1.0/255.0, 0)
|
||||
|
||||
c_trans_normalize_img = [c_rescale_image, c_resize_op, c_pad]
|
||||
c_trans_normalize_mask = [c_rescale_mask, c_resize_op, c_pad]
|
||||
c_center_crop = c_vision.CenterCrop(size=388)
|
||||
|
||||
train_image_ds = ds_train_images.map(input_columns="image", operations=c_trans_normalize_img)
|
||||
train_mask_ds = ds_train_masks.map(input_columns="mask", operations=c_trans_normalize_mask)
|
||||
train_ds = ds.zip((train_image_ds, train_mask_ds))
|
||||
train_ds = train_ds.project(columns=["image", "mask"])
|
||||
if augment:
|
||||
augment_process = train_data_augmentation
|
||||
c_resize_op = c_vision.Resize(size=(572, 572), interpolation=Inter.BILINEAR)
|
||||
train_ds = train_ds.map(input_columns=["image", "mask"], operations=augment_process)
|
||||
train_ds = train_ds.map(input_columns="image", operations=c_resize_op)
|
||||
train_ds = train_ds.map(input_columns="mask", operations=c_resize_op)
|
||||
|
||||
train_ds = train_ds.map(input_columns="mask", operations=c_center_crop)
|
||||
post_process = data_post_process
|
||||
train_ds = train_ds.map(input_columns=["image", "mask"], operations=post_process)
|
||||
train_ds = train_ds.shuffle(repeat*24)
|
||||
train_ds = train_ds.batch(batch_size=train_batch_size, drop_remainder=True)
|
||||
|
||||
valid_image_ds = ds_valid_images.map(input_columns="image", operations=c_trans_normalize_img)
|
||||
valid_mask_ds = ds_valid_masks.map(input_columns="mask", operations=c_trans_normalize_mask)
|
||||
valid_ds = ds.zip((valid_image_ds, valid_mask_ds))
|
||||
valid_ds = valid_ds.project(columns=["image", "mask"])
|
||||
valid_ds = valid_ds.map(input_columns="mask", operations=c_center_crop)
|
||||
post_process = data_post_process
|
||||
valid_ds = valid_ds.map(input_columns=["image", "mask"], operations=post_process)
|
||||
valid_ds = valid_ds.batch(batch_size=1, drop_remainder=True)
|
||||
|
||||
return train_ds, valid_ds
|
@ -0,0 +1,38 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# less required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import mindspore
|
||||
import mindspore.nn as nn
|
||||
import mindspore.ops.operations as F
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
|
||||
|
||||
class CrossEntropyWithLogits(_Loss):
|
||||
def __init__(self):
|
||||
super(CrossEntropyWithLogits, self).__init__()
|
||||
self.transpose_fn = F.Transpose()
|
||||
self.reshape_fn = F.Reshape()
|
||||
self.softmax_cross_entropy_loss = nn.SoftmaxCrossEntropyWithLogits()
|
||||
self.cast = F.Cast()
|
||||
|
||||
def construct(self, logits, label):
|
||||
# NCHW->NHWC
|
||||
logits = self.transpose_fn(logits, (0, 2, 3, 1))
|
||||
logits = self.cast(logits, mindspore.float32)
|
||||
label = self.transpose_fn(label, (0, 2, 3, 1))
|
||||
|
||||
loss = self.reduce_mean(
|
||||
self.softmax_cross_entropy_loss(self.reshape_fn(logits, (-1, 2)), self.reshape_fn(label, (-1, 2))))
|
||||
return self.get_loss(loss)
|
@ -0,0 +1,16 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# less required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
from .unet_model import UNet
|
@ -0,0 +1,47 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# less required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
from src.unet.unet_parts import DoubleConv, Down, Up1, Up2, Up3, Up4, OutConv
|
||||
import mindspore.nn as nn
|
||||
|
||||
class UNet(nn.Cell):
|
||||
def __init__(self, n_channels, n_classes):
|
||||
super(UNet, self).__init__()
|
||||
self.n_channels = n_channels
|
||||
self.n_classes = n_classes
|
||||
self.inc = DoubleConv(n_channels, 64)
|
||||
self.down1 = Down(64, 128)
|
||||
self.down2 = Down(128, 256)
|
||||
self.down3 = Down(256, 512)
|
||||
self.down4 = Down(512, 1024)
|
||||
self.up1 = Up1(1024, 512)
|
||||
self.up2 = Up2(512, 256)
|
||||
self.up3 = Up3(256, 128)
|
||||
self.up4 = Up4(128, 64)
|
||||
self.outc = OutConv(64, n_classes)
|
||||
|
||||
def construct(self, x):
|
||||
|
||||
x1 = self.inc(x)
|
||||
x2 = self.down1(x1)
|
||||
x3 = self.down2(x2)
|
||||
x4 = self.down3(x3)
|
||||
x5 = self.down4(x4)
|
||||
x = self.up1(x5, x4)
|
||||
x = self.up2(x, x3)
|
||||
x = self.up3(x, x2)
|
||||
x = self.up4(x, x1)
|
||||
logits = self.outc(x)
|
||||
return logits
|
@ -0,0 +1,150 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# less required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
""" Parts of the U-Net model """
|
||||
|
||||
import mindspore.nn as nn
|
||||
import mindspore.ops.operations as F
|
||||
from mindspore.common.initializer import TruncatedNormal
|
||||
from mindspore.nn import CentralCrop
|
||||
|
||||
|
||||
class DoubleConv(nn.Cell):
|
||||
|
||||
def __init__(self, in_channels, out_channels, mid_channels=None):
|
||||
super().__init__()
|
||||
init_value_0 = TruncatedNormal(0.06)
|
||||
init_value_1 = TruncatedNormal(0.06)
|
||||
if not mid_channels:
|
||||
mid_channels = out_channels
|
||||
self.double_conv = nn.SequentialCell(
|
||||
[nn.Conv2d(in_channels, mid_channels, kernel_size=3, has_bias=True,
|
||||
weight_init=init_value_0, pad_mode="valid"),
|
||||
nn.ReLU(),
|
||||
nn.Conv2d(mid_channels, out_channels, kernel_size=3, has_bias=True,
|
||||
weight_init=init_value_1, pad_mode="valid"),
|
||||
nn.ReLU()]
|
||||
)
|
||||
|
||||
def construct(self, x):
|
||||
return self.double_conv(x)
|
||||
|
||||
|
||||
class Down(nn.Cell):
|
||||
"""Downscaling with maxpool then double conv"""
|
||||
|
||||
def __init__(self, in_channels, out_channels):
|
||||
super().__init__()
|
||||
|
||||
self.maxpool_conv = nn.SequentialCell(
|
||||
[nn.MaxPool2d(kernel_size=2, stride=2),
|
||||
DoubleConv(in_channels, out_channels)]
|
||||
)
|
||||
|
||||
def construct(self, x):
|
||||
return self.maxpool_conv(x)
|
||||
|
||||
|
||||
class Up1(nn.Cell):
|
||||
"""Upscaling then double conv"""
|
||||
|
||||
def __init__(self, in_channels, out_channels, bilinear=True):
|
||||
super().__init__()
|
||||
self.concat = F.Concat(axis=1)
|
||||
self.factor = 56.0 / 64.0
|
||||
self.center_crop = CentralCrop(central_fraction=self.factor)
|
||||
self.print_fn = F.Print()
|
||||
self.conv = DoubleConv(in_channels, out_channels, in_channels // 2)
|
||||
self.up = nn.Conv2dTranspose(in_channels, in_channels // 2, kernel_size=2, stride=2)
|
||||
self.relu = nn.ReLU()
|
||||
|
||||
def construct(self, x1, x2):
|
||||
x1 = self.up(x1)
|
||||
x1 = self.relu(x1)
|
||||
x2 = self.center_crop(x2)
|
||||
x = self.concat((x1, x2))
|
||||
return self.conv(x)
|
||||
|
||||
|
||||
class Up2(nn.Cell):
|
||||
"""Upscaling then double conv"""
|
||||
|
||||
def __init__(self, in_channels, out_channels, bilinear=True):
|
||||
super().__init__()
|
||||
self.concat = F.Concat(axis=1)
|
||||
self.factor = 104.0 / 136.0
|
||||
self.center_crop = CentralCrop(central_fraction=self.factor)
|
||||
self.conv = DoubleConv(in_channels, out_channels, in_channels // 2)
|
||||
self.up = nn.Conv2dTranspose(in_channels, in_channels // 2, kernel_size=2, stride=2)
|
||||
self.relu = nn.ReLU()
|
||||
|
||||
def construct(self, x1, x2):
|
||||
x1 = self.up(x1)
|
||||
x1 = self.relu(x1)
|
||||
x2 = self.center_crop(x2)
|
||||
x = self.concat((x1, x2))
|
||||
return self.conv(x)
|
||||
|
||||
|
||||
class Up3(nn.Cell):
|
||||
"""Upscaling then double conv"""
|
||||
|
||||
def __init__(self, in_channels, out_channels, bilinear=True):
|
||||
super().__init__()
|
||||
self.concat = F.Concat(axis=1)
|
||||
self.factor = 200 / 280
|
||||
self.center_crop = CentralCrop(central_fraction=self.factor)
|
||||
self.print_fn = F.Print()
|
||||
self.conv = DoubleConv(in_channels, out_channels, in_channels // 2)
|
||||
self.up = nn.Conv2dTranspose(in_channels, in_channels // 2, kernel_size=2, stride=2)
|
||||
self.relu = nn.ReLU()
|
||||
|
||||
def construct(self, x1, x2):
|
||||
x1 = self.up(x1)
|
||||
x1 = self.relu(x1)
|
||||
x2 = self.center_crop(x2)
|
||||
x = self.concat((x1, x2))
|
||||
return self.conv(x)
|
||||
|
||||
|
||||
class Up4(nn.Cell):
|
||||
"""Upscaling then double conv"""
|
||||
|
||||
def __init__(self, in_channels, out_channels, bilinear=True):
|
||||
super().__init__()
|
||||
self.concat = F.Concat(axis=1)
|
||||
self.factor = 392 / 568
|
||||
self.center_crop = CentralCrop(central_fraction=self.factor)
|
||||
self.conv = DoubleConv(in_channels, out_channels, in_channels // 2)
|
||||
self.up = nn.Conv2dTranspose(in_channels, in_channels // 2, kernel_size=2, stride=2)
|
||||
self.relu = nn.ReLU()
|
||||
|
||||
def construct(self, x1, x2):
|
||||
x1 = self.up(x1)
|
||||
x1 = self.relu(x1)
|
||||
x2 = self.center_crop(x2)
|
||||
x = self.concat((x1, x2))
|
||||
return self.conv(x)
|
||||
|
||||
|
||||
class OutConv(nn.Cell):
|
||||
def __init__(self, in_channels, out_channels):
|
||||
super(OutConv, self).__init__()
|
||||
init_value = TruncatedNormal(0.06)
|
||||
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1, has_bias=True, weight_init=init_value)
|
||||
|
||||
def construct(self, x):
|
||||
x = self.conv(x)
|
||||
return x
|
@ -0,0 +1,56 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# less required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import time
|
||||
import numpy as np
|
||||
from mindspore.train.callback import Callback
|
||||
from mindspore.common.tensor import Tensor
|
||||
|
||||
class StepLossTimeMonitor(Callback):
|
||||
|
||||
def __init__(self, batch_size, per_print_times=1):
|
||||
super(StepLossTimeMonitor, self).__init__()
|
||||
if not isinstance(per_print_times, int) or per_print_times < 0:
|
||||
raise ValueError("print_step must be int and >= 0.")
|
||||
self._per_print_times = per_print_times
|
||||
self.batch_size = batch_size
|
||||
|
||||
def step_begin(self, run_context):
|
||||
self.step_time = time.time()
|
||||
|
||||
def step_end(self, run_context):
|
||||
|
||||
step_seconds = time.time() - self.step_time
|
||||
step_fps = self.batch_size*1.0/step_seconds
|
||||
|
||||
cb_params = run_context.original_args()
|
||||
loss = cb_params.net_outputs
|
||||
|
||||
if isinstance(loss, (tuple, list)):
|
||||
if isinstance(loss[0], Tensor) and isinstance(loss[0].asnumpy(), np.ndarray):
|
||||
loss = loss[0]
|
||||
|
||||
if isinstance(loss, Tensor) and isinstance(loss.asnumpy(), np.ndarray):
|
||||
loss = np.mean(loss.asnumpy())
|
||||
|
||||
cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num + 1
|
||||
|
||||
if isinstance(loss, float) and (np.isnan(loss) or np.isinf(loss)):
|
||||
raise ValueError("epoch: {} step: {}. Invalid loss, terminating training.".format(
|
||||
cb_params.cur_epoch_num, cur_step_in_epoch))
|
||||
if self._per_print_times != 0 and cb_params.cur_step_num % self._per_print_times == 0:
|
||||
# TEST
|
||||
print("step: %s, loss is %s, fps is %s" % (cur_step_in_epoch, loss, step_fps), flush=True)
|
||||
# print("step: %s, loss is %s, fps is %s" % ( cur_step_in_epoch, loss, step_fps))
|
@ -0,0 +1,106 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# less required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import os
|
||||
import argparse
|
||||
import logging
|
||||
import ast
|
||||
|
||||
import mindspore
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Model, context
|
||||
from mindspore.communication.management import init, get_group_size
|
||||
from mindspore.train.callback import CheckpointConfig, ModelCheckpoint
|
||||
from mindspore.context import ParallelMode
|
||||
|
||||
from src.unet import UNet
|
||||
from src.data_loader import create_dataset
|
||||
from src.loss import CrossEntropyWithLogits
|
||||
from src.utils import StepLossTimeMonitor
|
||||
from src.config import cfg_unet
|
||||
|
||||
device_id = int(os.getenv('DEVICE_ID'))
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, device_id=device_id)
|
||||
|
||||
mindspore.set_seed(1)
|
||||
|
||||
def train_net(data_dir,
|
||||
cross_valid_ind=1,
|
||||
epochs=400,
|
||||
batch_size=16,
|
||||
lr=0.0001,
|
||||
run_distribute=False,
|
||||
cfg=None):
|
||||
|
||||
|
||||
if run_distribute:
|
||||
init()
|
||||
group_size = get_group_size()
|
||||
parallel_mode = ParallelMode.DATA_PARALLEL
|
||||
context.set_auto_parallel_context(parallel_mode=parallel_mode,
|
||||
device_num=group_size,
|
||||
parameter_broadcast=True,
|
||||
gradients_mean=False)
|
||||
net = UNet(n_channels=cfg['num_channels'], n_classes=cfg['num_classes'])
|
||||
|
||||
criterion = CrossEntropyWithLogits()
|
||||
train_dataset, _ = create_dataset(data_dir, epochs, batch_size, True, cross_valid_ind, run_distribute)
|
||||
train_data_size = train_dataset.get_dataset_size()
|
||||
print("dataset length is:", train_data_size)
|
||||
ckpt_config = CheckpointConfig(save_checkpoint_steps=train_data_size,
|
||||
keep_checkpoint_max=cfg['keep_checkpoint_max'])
|
||||
ckpoint_cb = ModelCheckpoint(prefix='ckpt_unet_medical_adam',
|
||||
directory='./ckpt_{}/'.format(device_id),
|
||||
config=ckpt_config)
|
||||
|
||||
optimizer = nn.Adam(params=net.trainable_params(), learning_rate=lr, weight_decay=cfg['weight_decay'],
|
||||
loss_scale=cfg['loss_scale'])
|
||||
|
||||
loss_scale_manager = mindspore.train.loss_scale_manager.FixedLossScaleManager(cfg['FixedLossScaleManager'], False)
|
||||
|
||||
model = Model(net, loss_fn=criterion, loss_scale_manager=loss_scale_manager, optimizer=optimizer, amp_level="O3")
|
||||
|
||||
print("============== Starting Training ==============")
|
||||
model.train(1, train_dataset, callbacks=[StepLossTimeMonitor(batch_size=batch_size), ckpoint_cb],
|
||||
dataset_sink_mode=False)
|
||||
print("============== End Training ==============")
|
||||
|
||||
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser(description='Train the UNet on images and target masks',
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
parser.add_argument('-d', '--data_url', dest='data_url', type=str, default='data/',
|
||||
help='data directory')
|
||||
parser.add_argument('-t', '--run_distribute', type=ast.literal_eval,
|
||||
default=False, help='Run distribute, default: false.')
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s')
|
||||
args = get_args()
|
||||
print("Training setting:", args)
|
||||
|
||||
epoch_size = cfg_unet['epochs'] if not args.run_distribute else cfg_unet['distribute_epochs']
|
||||
train_net(data_dir=args.data_url,
|
||||
cross_valid_ind=cfg_unet['cross_valid_ind'],
|
||||
epochs=epoch_size,
|
||||
batch_size=cfg_unet['batchsize'],
|
||||
lr=cfg_unet['lr'],
|
||||
run_distribute=args.run_distribute,
|
||||
cfg=cfg_unet)
|
Loading…
Reference in new issue