commit
79893d6fef
@ -0,0 +1,111 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/cpu/pack_cpu_kernel.h"
|
||||
#include <thread>
|
||||
#include <algorithm>
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename T>
|
||||
PackCpuFwdKernel<T>::PackCpuFwdKernel()
|
||||
: axis_(0), input_num_(1), output_size_(0), dims_behind_axis_(1), inputs_host_(nullptr) {}
|
||||
|
||||
template <typename T>
|
||||
void PackCpuFwdKernel<T>::InitKernel(const CNodePtr &kernel_node) {
|
||||
MS_EXCEPTION_IF_NULL(kernel_node);
|
||||
|
||||
axis_ = AnfAlgo::GetNodeAttr<int64_t>(kernel_node, AXIS);
|
||||
input_num_ = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
|
||||
if (axis_ < 0) {
|
||||
auto input_shape = AnfAlgo::GetInputDeviceShape(kernel_node, 0);
|
||||
axis_ += (SizeToInt(input_shape.size()) + 1);
|
||||
}
|
||||
|
||||
// calculate elements while dim >= axis
|
||||
auto first_input_shape = AnfAlgo::GetInputDeviceShape(kernel_node, 0);
|
||||
for (size_t i = IntToSize(axis_); i < first_input_shape.size(); i++) {
|
||||
dims_behind_axis_ *= first_input_shape[i];
|
||||
}
|
||||
|
||||
auto output_shape = AnfAlgo::GetOutputDeviceShape(kernel_node, 0);
|
||||
output_size_ = 1;
|
||||
for (size_t i = 0; i < output_shape.size(); i++) {
|
||||
output_size_ *= output_shape[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool PackCpuFwdKernel<T>::Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs) {
|
||||
if (!CheckParam(outputs)) {
|
||||
return false;
|
||||
}
|
||||
auto output = reinterpret_cast<T *>(outputs[0]->addr);
|
||||
|
||||
inputs_host_ = std::make_unique<T *[]>(input_num_);
|
||||
for (size_t i = 0; i < inputs.size(); i++) {
|
||||
inputs_host_[i] = reinterpret_cast<T *>(inputs[i]->addr);
|
||||
}
|
||||
|
||||
// multi-threading
|
||||
size_t input_size = output_size_;
|
||||
size_t max_thread_num = std::max(std::thread::hardware_concurrency(), static_cast<unsigned int>(1));
|
||||
size_t use_thread_num =
|
||||
input_size < 128 * max_thread_num ? std::ceil(static_cast<float>(input_size / 128.0)) : max_thread_num;
|
||||
std::vector<std::thread> threads;
|
||||
|
||||
if (use_thread_num < 1) {
|
||||
use_thread_num = 1;
|
||||
}
|
||||
|
||||
threads.reserve(use_thread_num);
|
||||
size_t start = 0;
|
||||
size_t batch_size = (input_size + use_thread_num - 1) / use_thread_num;
|
||||
|
||||
while (start < input_size) {
|
||||
size_t end = (start + batch_size) > input_size ? input_size : (start + batch_size);
|
||||
threads.emplace_back(std::thread(&PackCpuFwdKernel::PackTensor, this, output, start, end));
|
||||
start += batch_size;
|
||||
}
|
||||
|
||||
for (auto &it : threads) {
|
||||
it.join();
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool PackCpuFwdKernel<T>::CheckParam(const std::vector<AddressPtr> &outputs) {
|
||||
if (outputs.size() != 1) {
|
||||
MS_LOG(EXCEPTION) << "Output number is " << outputs.size() << ", but PackGpuFwdKernel needs 1 output.";
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void PackCpuFwdKernel<T>::PackTensor(T *output, size_t start, size_t end) {
|
||||
for (size_t pos = start; pos < end; ++pos) {
|
||||
size_t cur_input_index = pos / dims_behind_axis_ % input_num_;
|
||||
size_t cycle_len = input_num_ * dims_behind_axis_;
|
||||
size_t local_index = pos / cycle_len * dims_behind_axis_ + pos % cycle_len % dims_behind_axis_;
|
||||
output[pos] = inputs_host_[cur_input_index][local_index];
|
||||
}
|
||||
}
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
@ -0,0 +1,82 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_PACK_CPU_KERNEL_H
|
||||
#define MINDSPORE_PACK_CPU_KERNEL_H
|
||||
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename T>
|
||||
class PackCpuFwdKernel : public CPUKernel {
|
||||
public:
|
||||
PackCpuFwdKernel();
|
||||
~PackCpuFwdKernel() override = default;
|
||||
|
||||
void InitKernel(const CNodePtr &kernel_node) override;
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs) override;
|
||||
|
||||
private:
|
||||
bool CheckParam(const std::vector<AddressPtr> &outputs);
|
||||
void PackTensor(T *output, size_t start, size_t end);
|
||||
|
||||
int axis_;
|
||||
size_t input_num_;
|
||||
size_t output_size_;
|
||||
size_t dims_behind_axis_;
|
||||
std::unique_ptr<T *[]> inputs_host_;
|
||||
};
|
||||
|
||||
MS_REG_CPU_KERNEL_T(Pack,
|
||||
KernelAttr().SetAllSameAttr(true).AddInputAttr(kNumberTypeInt8).AddOutputAttr(kNumberTypeInt8),
|
||||
PackCpuFwdKernel, int8_t)
|
||||
MS_REG_CPU_KERNEL_T(Pack,
|
||||
KernelAttr().SetAllSameAttr(true).AddInputAttr(kNumberTypeInt16).AddOutputAttr(kNumberTypeInt16),
|
||||
PackCpuFwdKernel, int16_t)
|
||||
MS_REG_CPU_KERNEL_T(Pack,
|
||||
KernelAttr().SetAllSameAttr(true).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
PackCpuFwdKernel, int32_t)
|
||||
MS_REG_CPU_KERNEL_T(Pack,
|
||||
KernelAttr().SetAllSameAttr(true).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64),
|
||||
PackCpuFwdKernel, int64_t)
|
||||
MS_REG_CPU_KERNEL_T(Pack,
|
||||
KernelAttr().SetAllSameAttr(true).AddInputAttr(kNumberTypeUInt8).AddOutputAttr(kNumberTypeUInt8),
|
||||
PackCpuFwdKernel, uint8_t)
|
||||
MS_REG_CPU_KERNEL_T(Pack,
|
||||
KernelAttr().SetAllSameAttr(true).AddInputAttr(kNumberTypeBool).AddOutputAttr(kNumberTypeBool),
|
||||
PackCpuFwdKernel, bool)
|
||||
MS_REG_CPU_KERNEL_T(Pack,
|
||||
KernelAttr().SetAllSameAttr(true).AddInputAttr(kNumberTypeUInt16).AddOutputAttr(kNumberTypeUInt16),
|
||||
PackCpuFwdKernel, uint16_t)
|
||||
MS_REG_CPU_KERNEL_T(Pack,
|
||||
KernelAttr().SetAllSameAttr(true).AddInputAttr(kNumberTypeUInt32).AddOutputAttr(kNumberTypeUInt32),
|
||||
PackCpuFwdKernel, uint32_t)
|
||||
MS_REG_CPU_KERNEL_T(Pack,
|
||||
KernelAttr().SetAllSameAttr(true).AddInputAttr(kNumberTypeUInt64).AddOutputAttr(kNumberTypeUInt64),
|
||||
PackCpuFwdKernel, uint64_t)
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
Pack, KernelAttr().SetAllSameAttr(true).AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
|
||||
PackCpuFwdKernel, float16)
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
Pack, KernelAttr().SetAllSameAttr(true).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
PackCpuFwdKernel, float)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_PACK_CPU_KERNEL_H
|
@ -0,0 +1,100 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
import mindspore.ops.operations.array_ops as P
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
|
||||
class PackNet(nn.Cell):
|
||||
def __init__(self, nptype):
|
||||
super(PackNet, self).__init__()
|
||||
self.pack = P.Pack(axis=2)
|
||||
self.data_np = np.array([0] * 16).astype(nptype)
|
||||
self.data_np = np.reshape(self.data_np, (2, 2, 2, 2))
|
||||
self.x1 = Parameter(initializer(
|
||||
Tensor(self.data_np), [2, 2, 2, 2]), name='x1')
|
||||
self.x2 = Parameter(initializer(
|
||||
Tensor(np.arange(16).reshape(2, 2, 2, 2).astype(nptype)), [2, 2, 2, 2]), name='x2')
|
||||
|
||||
@ms_function
|
||||
def construct(self):
|
||||
return self.pack((self.x1, self.x2))
|
||||
|
||||
|
||||
def pack(nptype):
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
|
||||
pack_ = PackNet(nptype)
|
||||
output = pack_()
|
||||
expect = np.array([[[[[0, 0],
|
||||
[0, 0]],
|
||||
[[0, 1],
|
||||
[2, 3]]],
|
||||
[[[0, 0],
|
||||
[0, 0]],
|
||||
[[4, 5],
|
||||
[6, 7]]]],
|
||||
[[[[0, 0],
|
||||
[0, 0]],
|
||||
[[8, 9],
|
||||
[10, 11]]],
|
||||
[[[0, 0],
|
||||
[0, 0]],
|
||||
[[12, 13],
|
||||
[14, 15]]]]]).astype(nptype)
|
||||
assert (output.asnumpy() == expect).all()
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_pack_graph_float32():
|
||||
pack(np.float32)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_pack_graph_float16():
|
||||
pack(np.float16)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_pack_graph_int32():
|
||||
pack(np.int32)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_pack_graph_int16():
|
||||
pack(np.int16)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_pack_graph_uint8():
|
||||
pack(np.uint8)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_pack_graph_bool():
|
||||
pack(np.bool)
|
Loading…
Reference in new issue