|
|
|
@ -26,6 +26,7 @@ from util import save_and_check_md5, diff_mse, visualize_list, config_get_set_se
|
|
|
|
|
|
|
|
|
|
DATA_DIR = "../data/dataset/testCifar10Data"
|
|
|
|
|
DATA_DIR2 = "../data/dataset/testImageNetData2/train/"
|
|
|
|
|
DATA_DIR3 = "../data/dataset/testCelebAData/"
|
|
|
|
|
|
|
|
|
|
GENERATE_GOLDEN = False
|
|
|
|
|
|
|
|
|
@ -162,6 +163,55 @@ def test_mixup_batch_success3(plot=False):
|
|
|
|
|
logger.info("MSE= {}".format(str(np.mean(mse))))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_mixup_batch_success4(plot=False):
|
|
|
|
|
"""
|
|
|
|
|
Test MixUpBatch op on a dataset where OneHot returns a 2D vector.
|
|
|
|
|
Alpha parameter will be selected by default in this case
|
|
|
|
|
"""
|
|
|
|
|
logger.info("test_mixup_batch_success4")
|
|
|
|
|
|
|
|
|
|
# Original Images
|
|
|
|
|
ds_original = ds.CelebADataset(DATA_DIR3, shuffle=False)
|
|
|
|
|
decode_op = vision.Decode()
|
|
|
|
|
ds_original = ds_original.map(input_columns=["image"], operations=[decode_op])
|
|
|
|
|
ds_original = ds_original.batch(2, drop_remainder=True)
|
|
|
|
|
|
|
|
|
|
images_original = None
|
|
|
|
|
for idx, (image, _) in enumerate(ds_original):
|
|
|
|
|
if idx == 0:
|
|
|
|
|
images_original = image
|
|
|
|
|
else:
|
|
|
|
|
images_original = np.append(images_original, image, axis=0)
|
|
|
|
|
|
|
|
|
|
# MixUp Images
|
|
|
|
|
data1 = ds.CelebADataset(DATA_DIR3, shuffle=False)
|
|
|
|
|
|
|
|
|
|
decode_op = vision.Decode()
|
|
|
|
|
data1 = data1.map(input_columns=["image"], operations=[decode_op])
|
|
|
|
|
|
|
|
|
|
one_hot_op = data_trans.OneHot(num_classes=100)
|
|
|
|
|
data1 = data1.map(input_columns=["attr"], operations=one_hot_op)
|
|
|
|
|
|
|
|
|
|
mixup_batch_op = vision.MixUpBatch()
|
|
|
|
|
data1 = data1.batch(2, drop_remainder=True)
|
|
|
|
|
data1 = data1.map(input_columns=["image", "attr"], operations=mixup_batch_op)
|
|
|
|
|
|
|
|
|
|
images_mixup = np.array([])
|
|
|
|
|
for idx, (image, _) in enumerate(data1):
|
|
|
|
|
if idx == 0:
|
|
|
|
|
images_mixup = image
|
|
|
|
|
else:
|
|
|
|
|
images_mixup = np.append(images_mixup, image, axis=0)
|
|
|
|
|
if plot:
|
|
|
|
|
visualize_list(images_original, images_mixup)
|
|
|
|
|
|
|
|
|
|
num_samples = images_original.shape[0]
|
|
|
|
|
mse = np.zeros(num_samples)
|
|
|
|
|
for i in range(num_samples):
|
|
|
|
|
mse[i] = diff_mse(images_mixup[i], images_original[i])
|
|
|
|
|
logger.info("MSE= {}".format(str(np.mean(mse))))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_mixup_batch_md5():
|
|
|
|
|
"""
|
|
|
|
|
Test MixUpBatch with MD5:
|
|
|
|
@ -218,7 +268,7 @@ def test_mixup_batch_fail1():
|
|
|
|
|
images_mixup = image
|
|
|
|
|
else:
|
|
|
|
|
images_mixup = np.append(images_mixup, image, axis=0)
|
|
|
|
|
error_message = "You must make sure images are HWC or CHW and batch"
|
|
|
|
|
error_message = "You must make sure images are HWC or CHW and batched"
|
|
|
|
|
assert error_message in str(error.value)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -316,12 +366,50 @@ def test_mixup_batch_fail4():
|
|
|
|
|
assert error_message in str(error.value)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_mixup_batch_fail5():
|
|
|
|
|
"""
|
|
|
|
|
Test MixUpBatch Fail 5
|
|
|
|
|
We expect this to fail because labels are not OntHot encoded
|
|
|
|
|
"""
|
|
|
|
|
logger.info("test_mixup_batch_fail5")
|
|
|
|
|
|
|
|
|
|
# Original Images
|
|
|
|
|
ds_original = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False)
|
|
|
|
|
ds_original = ds_original.batch(5)
|
|
|
|
|
|
|
|
|
|
images_original = np.array([])
|
|
|
|
|
for idx, (image, _) in enumerate(ds_original):
|
|
|
|
|
if idx == 0:
|
|
|
|
|
images_original = image
|
|
|
|
|
else:
|
|
|
|
|
images_original = np.append(images_original, image, axis=0)
|
|
|
|
|
|
|
|
|
|
# MixUp Images
|
|
|
|
|
data1 = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False)
|
|
|
|
|
|
|
|
|
|
mixup_batch_op = vision.MixUpBatch()
|
|
|
|
|
data1 = data1.batch(5, drop_remainder=True)
|
|
|
|
|
data1 = data1.map(input_columns=["image", "label"], operations=mixup_batch_op)
|
|
|
|
|
|
|
|
|
|
with pytest.raises(RuntimeError) as error:
|
|
|
|
|
images_mixup = np.array([])
|
|
|
|
|
for idx, (image, _) in enumerate(data1):
|
|
|
|
|
if idx == 0:
|
|
|
|
|
images_mixup = image
|
|
|
|
|
else:
|
|
|
|
|
images_mixup = np.append(images_mixup, image, axis=0)
|
|
|
|
|
error_message = "MixUpBatch: Wrong labels shape. The second column (labels) must have a shape of NC or NLC"
|
|
|
|
|
assert error_message in str(error.value)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
test_mixup_batch_success1(plot=True)
|
|
|
|
|
test_mixup_batch_success2(plot=True)
|
|
|
|
|
test_mixup_batch_success3(plot=True)
|
|
|
|
|
test_mixup_batch_success4(plot=True)
|
|
|
|
|
test_mixup_batch_md5()
|
|
|
|
|
test_mixup_batch_fail1()
|
|
|
|
|
test_mixup_batch_fail2()
|
|
|
|
|
test_mixup_batch_fail3()
|
|
|
|
|
test_mixup_batch_fail4()
|
|
|
|
|
test_mixup_batch_fail5()
|
|
|
|
|