|
|
|
@ -19,8 +19,8 @@
|
|
|
|
|
- [Evaluation Result](#evaluation-result)
|
|
|
|
|
- [Model Description](#model-description)
|
|
|
|
|
- [Performance](#performance)
|
|
|
|
|
- [Training Performance](#training-performance)
|
|
|
|
|
- [Evaluation Performance](#evaluation-performance)
|
|
|
|
|
- [Inference Performance](#inference-performance)
|
|
|
|
|
- [Description of Random Situation](#description-of-random-situation)
|
|
|
|
|
- [ModelZoo Homepage](#modelzoo-homepage)
|
|
|
|
|
|
|
|
|
@ -280,7 +280,7 @@ Usage: sh run_standalone_train.sh [PRETRAINED_MODEL]
|
|
|
|
|
"save_checkpoint": True, # whether save checkpoint or not
|
|
|
|
|
"save_checkpoint_epochs": 1, # save checkpoint interval
|
|
|
|
|
"keep_checkpoint_max": 12, # max number of saved checkpoint
|
|
|
|
|
"save_checkpoint_path": "./checkpoint", # path of checkpoint
|
|
|
|
|
"save_checkpoint_path": "./", # path of checkpoint
|
|
|
|
|
|
|
|
|
|
"mindrecord_dir": "/home/maskrcnn/MindRecord_COCO2017_Train", # path of mindrecord
|
|
|
|
|
"coco_root": "/home/maskrcnn/", # path of coco root dateset
|
|
|
|
@ -336,13 +336,13 @@ Training result will be stored in the example path, whose folder name begins wit
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
# distribute training result(8p)
|
|
|
|
|
epoch: 1 step: 7393 ,rpn_loss: 0.10626, rcnn_loss: 0.81592, rpn_cls_loss: 0.05862, rpn_reg_loss: 0.04761, rcnn_cls_loss: 0.32642, rcnn_reg_loss: 0.15503, rcnn_mask_loss: 0.33447, total_loss: 0.92218
|
|
|
|
|
epoch: 2 step: 7393 ,rpn_loss: 0.00911, rcnn_loss: 0.34082, rpn_cls_loss: 0.00341, rpn_reg_loss: 0.00571, rcnn_cls_loss: 0.07440, rcnn_reg_loss: 0.05872, rcnn_mask_loss: 0.20764, total_loss: 0.34993
|
|
|
|
|
epoch: 3 step: 7393 ,rpn_loss: 0.02087, rcnn_loss: 0.98633, rpn_cls_loss: 0.00665, rpn_reg_loss: 0.01422, rcnn_cls_loss: 0.35913, rcnn_reg_loss: 0.21375, rcnn_mask_loss: 0.41382, total_loss: 1.00720
|
|
|
|
|
epoch: 1 step: 7393 ,rpn_loss: 0.05716, rcnn_loss: 0.81152, rpn_cls_loss: 0.04828, rpn_reg_loss: 0.00889, rcnn_cls_loss: 0.28784, rcnn_reg_loss: 0.17590, rcnn_mask_loss: 0.34790, total_loss: 0.86868
|
|
|
|
|
epoch: 2 step: 7393 ,rpn_loss: 0.00434, rcnn_loss: 0.36572, rpn_cls_loss: 0.00339, rpn_reg_loss: 0.00095, rcnn_cls_loss: 0.08240, rcnn_reg_loss: 0.05554, rcnn_mask_loss: 0.22778, total_loss: 0.37006
|
|
|
|
|
epoch: 3 step: 7393 ,rpn_loss: 0.00996, rcnn_loss: 0.83789, rpn_cls_loss: 0.00701, rpn_reg_loss: 0.00294, rcnn_cls_loss: 0.39478, rcnn_reg_loss: 0.14917, rcnn_mask_loss: 0.29370, total_loss: 0.84785
|
|
|
|
|
...
|
|
|
|
|
epoch: 10 step: 7393 ,rpn_loss: 0.02122, rcnn_loss: 0.55176, rpn_cls_loss: 0.00620, rpn_reg_loss: 0.01503, rcnn_cls_loss: 0.12708, rcnn_reg_loss: 0.10254, rcnn_mask_loss: 0.32227, total_loss: 0.57298
|
|
|
|
|
epoch: 11 step: 7393 ,rpn_loss: 0.03772, rcnn_loss: 0.60791, rpn_cls_loss: 0.03058, rpn_reg_loss: 0.00713, rcnn_cls_loss: 0.23987, rcnn_reg_loss: 0.11743, rcnn_mask_loss: 0.25049, total_loss: 0.64563
|
|
|
|
|
epoch: 12 step: 7393 ,rpn_loss: 0.06482, rcnn_loss: 0.47681, rpn_cls_loss: 0.04770, rpn_reg_loss: 0.01709, rcnn_cls_loss: 0.16492, rcnn_reg_loss: 0.04990, rcnn_mask_loss: 0.26196, total_loss: 0.54163
|
|
|
|
|
epoch: 10 step: 7393 ,rpn_loss: 0.00667, rcnn_loss: 0.65625, rpn_cls_loss: 0.00536, rpn_reg_loss: 0.00131, rcnn_cls_loss: 0.17590, rcnn_reg_loss: 0.16199, rcnn_mask_loss: 0.31812, total_loss: 0.66292
|
|
|
|
|
epoch: 11 step: 7393 ,rpn_loss: 0.02003, rcnn_loss: 0.52051, rpn_cls_loss: 0.01761, rpn_reg_loss: 0.00241, rcnn_cls_loss: 0.16028, rcnn_reg_loss: 0.08411, rcnn_mask_loss: 0.27588, total_loss: 0.54054
|
|
|
|
|
epoch: 12 step: 7393 ,rpn_loss: 0.00547, rcnn_loss: 0.39258, rpn_cls_loss: 0.00285, rpn_reg_loss: 0.00262, rcnn_cls_loss: 0.08002, rcnn_reg_loss: 0.04990, rcnn_mask_loss: 0.26245, total_loss: 0.39804
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
## [Evaluation Process](#contents)
|
|
|
|
@ -364,39 +364,39 @@ Inference result will be stored in the example path, whose folder name is "eval"
|
|
|
|
|
```
|
|
|
|
|
Evaluate annotation type *bbox*
|
|
|
|
|
Accumulating evaluation results...
|
|
|
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.376
|
|
|
|
|
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.598
|
|
|
|
|
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.405
|
|
|
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.239
|
|
|
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.414
|
|
|
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.475
|
|
|
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.378
|
|
|
|
|
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.602
|
|
|
|
|
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.407
|
|
|
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.242
|
|
|
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.417
|
|
|
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.480
|
|
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.311
|
|
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.500
|
|
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.528
|
|
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.371
|
|
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.572
|
|
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.653
|
|
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.497
|
|
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.524
|
|
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.363
|
|
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.567
|
|
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.647
|
|
|
|
|
|
|
|
|
|
Evaluate annotation type *segm*
|
|
|
|
|
Accumulating evaluation results...
|
|
|
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.326
|
|
|
|
|
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.553
|
|
|
|
|
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.344
|
|
|
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.335
|
|
|
|
|
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.557
|
|
|
|
|
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.351
|
|
|
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.169
|
|
|
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.356
|
|
|
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.462
|
|
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.278
|
|
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.426
|
|
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.445
|
|
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.294
|
|
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.484
|
|
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.558
|
|
|
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.365
|
|
|
|
|
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.480
|
|
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.284
|
|
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.433
|
|
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.451
|
|
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.285
|
|
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.490
|
|
|
|
|
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.586
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
# Model Description
|
|
|
|
|
## Performance
|
|
|
|
|
|
|
|
|
|
### Training Performance
|
|
|
|
|
### Evaluation Performance
|
|
|
|
|
|
|
|
|
|
| Parameters | MaskRCNN |
|
|
|
|
|
| -------------------------- | ----------------------------------------------------------- |
|
|
|
|
@ -407,14 +407,18 @@ Accumulating evaluation results...
|
|
|
|
|
| Dataset | COCO2017 |
|
|
|
|
|
| Training Parameters | epoch=12, batch_size = 2 |
|
|
|
|
|
| Optimizer | SGD |
|
|
|
|
|
| Loss Function | Softmax Cross Entropy ,Sigmoid Cross Entropy,SmoothL1Loss |
|
|
|
|
|
| Speed | 1pc: 250 ms/step; 8pcs: 260 ms/step |
|
|
|
|
|
| Total time | 1pc: 52 hours; 8pcs: 6.6 hours |
|
|
|
|
|
| Parameters (M) | 280 |
|
|
|
|
|
| Scripts | https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/maskrcnn |
|
|
|
|
|
| Loss Function | Softmax Cross Entropy, Sigmoid Cross Entropy, SmoothL1Loss |
|
|
|
|
|
| Output | Probability |
|
|
|
|
|
| Loss | 0.39804 |
|
|
|
|
|
| Speed | 1pc: 193 ms/step; 8pcs: 207 ms/step |
|
|
|
|
|
| Total time | 1pc: 46 hours; 8pcs: 5.38 hours |
|
|
|
|
|
| Parameters (M) | 84.8 |
|
|
|
|
|
| Checkpoint for Fine tuning | 85M(.ckpt file) |
|
|
|
|
|
| Model for inference | 571M(.air file) |
|
|
|
|
|
| Scripts | [maskrcnn script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/maskrcnn) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
### Evaluation Performance
|
|
|
|
|
### Inference Performance
|
|
|
|
|
|
|
|
|
|
| Parameters | MaskRCNN |
|
|
|
|
|
| ------------------- | --------------------------- |
|
|
|
|
@ -425,12 +429,12 @@ Accumulating evaluation results...
|
|
|
|
|
| Dataset | COCO2017 |
|
|
|
|
|
| batch_size | 2 |
|
|
|
|
|
| outputs | mAP |
|
|
|
|
|
| Accuracy | IoU=0.50:0.95 32.4% |
|
|
|
|
|
| Model for inference | 254M (.ckpt file) |
|
|
|
|
|
| Accuracy | IoU=0.50:0.95 (BoundingBox 37.0%, Mask 33.5) |
|
|
|
|
|
| Model for inference | 170M (.ckpt file) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# [Description of Random Situation](#contents)
|
|
|
|
|
In dataset.py, we set the seed inside “create_dataset" function. We also use random seed in train.py for weight initialization.
|
|
|
|
|
|
|
|
|
|
# [ModelZoo Homepage](#contents)
|
|
|
|
|
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
|
|
|
|
|
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
|
|
|
|
|