parent
584641180f
commit
7e4d972f6f
@ -0,0 +1,75 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
test assign sub
|
||||
"""
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
import mindspore.ops.operations as P
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
import mindspore as ms
|
||||
|
||||
class AssignW(nn.Cell):
|
||||
def __init__(self):
|
||||
super(AssignW, self).__init__()
|
||||
self.assign = P.Assign()
|
||||
|
||||
def construct(self, x, w):
|
||||
self.assign(x, w)
|
||||
return x
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.b = Parameter(initializer('ones', [5]), name='b')
|
||||
self.assign = AssignW()
|
||||
|
||||
def construct(self, value):
|
||||
return self.assign(self.b, value)
|
||||
|
||||
|
||||
def test_assign_through_cell():
|
||||
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
|
||||
net = Net()
|
||||
net.to_float(ms.float16)
|
||||
net.add_flags_recursive(fp16=False)
|
||||
input_data = Tensor(np.ones([5]).astype(np.float32))
|
||||
net(input_data)
|
||||
with pytest.raises(TypeError):
|
||||
net(None)
|
||||
|
||||
|
||||
class NetScatterNdUpdate(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetScatterNdUpdate, self).__init__()
|
||||
self.b = Parameter(initializer('ones', [5, 5]), name='b')
|
||||
self.scatter = P.ScatterNdUpdate()
|
||||
|
||||
def construct(self, idx, x):
|
||||
return self.scatter(self.b, idx, x)
|
||||
|
||||
|
||||
def test_scatter_nd_update():
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
net = NetScatterNdUpdate()
|
||||
x = Tensor(np.ones([5]).astype(np.float16))
|
||||
idx = Tensor(np.ones([1]).astype(np.int32))
|
||||
net(idx, x)
|
Loading…
Reference in new issue