parent
2b68b1e6b4
commit
7f602016f4
@ -0,0 +1,62 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
""" test adam """
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore.nn as nn
|
||||
from mindspore.common.api import _executor
|
||||
from mindspore import Tensor, Parameter
|
||||
from mindspore.nn import TrainOneStepCell, WithLossCell
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.nn.optim import RMSProp
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
""" Net definition """
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.weight = Parameter(Tensor(np.ones([64, 10]).astype(np.float32)), name="weight")
|
||||
self.bias = Parameter(Tensor(np.ones([10]).astype((np.float32))), name="bias")
|
||||
self.matmul = P.MatMul()
|
||||
self.biasAdd = P.BiasAdd()
|
||||
|
||||
def construct(self, x):
|
||||
x = self.biasAdd(self.matmul(x, self.weight), self.bias)
|
||||
return x
|
||||
|
||||
|
||||
def test_rmsprop_compile():
|
||||
""" test_adamw_compile """
|
||||
inputs = Tensor(np.ones([1, 64]).astype(np.float32))
|
||||
label = Tensor(np.zeros([1, 10]).astype(np.float32))
|
||||
net = Net()
|
||||
net.set_train()
|
||||
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits()
|
||||
optimizer = RMSProp(net.trainable_params(), learning_rate=0.1)
|
||||
|
||||
net_with_loss = WithLossCell(net, loss)
|
||||
train_network = TrainOneStepCell(net_with_loss, optimizer)
|
||||
_executor.compile(train_network, inputs, label)
|
||||
|
||||
|
||||
def test_rmsprop_e():
|
||||
net = Net()
|
||||
with pytest.raises(ValueError):
|
||||
RMSProp(net.get_parameters(), momentum=-0.1, learning_rate=0.1)
|
||||
|
||||
with pytest.raises(TypeError):
|
||||
RMSProp(net.get_parameters(), momentum=1, learning_rate=0.1)
|
||||
|
Loading…
Reference in new issue